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Abstract—Quantum transport algorithms such as QTBM and 
NEGF/RGF have been efficiently implemented in the multi-scale 
simulation tool NEMO5 by taking advantage of the 
Hamiltonian’s characteristics of nanowires without explicit spin-
orbit coupling in the tight binding representation. Benchmarks in 
a 3nm diameter, 20 nm length Si nanowire in atomistic 10 band 
tight binding representation demonstrate 3-5 times performance 
improvement over the current state of the literatures. 
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I.  INTRODUCTION  
As the dimension of electronic devices is shrinking and 

approaching ballistic limit, quantum effects such as tunneling, 
confinement and interference become crucial in device 
performance. Classical transport approach based on 
Boltzmann Transport Equation (BTE) cannot represent these 
quantum effects accurately. Consequently, quantum transport 
models gain increasing importance in device modeling and 
simulation. Algorithms such as the quantum transmitting 
boundary method (QTBM) [1] and non-equilibrium Green’s 
functions method (NEGF) [2] provide a general framework for 
quantum transport and are therefore accepted for modeling the 
physics of nanoscale devices [3]-[5]. However, these 
algorithms involve numerically expensive matrix operations 
such as eigenvalue problems, matrix inversions and matrix-
matrix products. For a Si nanowire FinFET with 3nm 
diameter, 20 nm lengths in 10 band tight-binding model, the 
device contains ~20,000 atoms. Solving an I-V characteristic 
with 10 bias points for such a device requires ~100,000s. 
Consequently, for realistic device simulations efficient 
implementations of these algorithms are critical. Although the 
QTBM and the NEGF algorithms are thoroughly discussed in 
literatures [1]-[5], details of efficient implementations of these 
algorithms are rarely given. In this work, the details of these 
algorithms are discussed and their efficient implementation 
into the multi-scale simulation tool NEMO5 [6] is presented. 
The impact of efficient implementations are illustrated on a 
20nm long, 3nm thick Si nanowire in 10 band atomistic tight-
binding (TB) representation. Performance improvements of 
QTBM and NEGF for time and peak memory of factors of 3-5 
over the current state of literatures can been achieved with the 
presented implementation details. 

II. ALGORITHM ANALYSIS AND IMPLEMENTATION 
DETAILS 

In quantum transport models the typical device is 
considered as an open system which is connected to two 
contacts, namely, source and drain [2]. The Schrödinger 
equation with open boundary condition is solved in order to 
calculate charge density and current density in the device. This 
open boundary condition is taken into account by contact self-
energies, which represent the charge injection and extraction 
effect of the contacts [2]. After the contact self-energies are 
solved, the electronic transport in the device is solved by 
either NEGF or QTBM algorithms.  

A. Contact Self-Energy 
The first step of QTBM or NEGF simulations is to solve 

for the open boundary condition, which is represented by 
contact self-energies. There are several known self-energy 
algorithms, such as the Sancho-Rubio method [7] and the 
transfer matrix method [5]. The Sancho-Rubio method is 
based on an iterative solution of the surface Green’s function , 
and once convergence is achieved a translation of it into a 
contact self-energy. The transfer matrix method is based on a 
generalized eigenvalue problem for contact modes and 
translation of the modes into a surface Green’s function and a 
contact self-energy. A modified version of the transfer matrix 
method presented in [5] transforms the generalized eigenvalue 
problem into a normal eigenvalue problem to reduce the 
numerical load of the contact self-energy calculations. Both 
methods are implemented in NEMO5, but we discuss the more 
efficient transfer matrix method: There are four numerical 
hotspots of this algorithm: 1) translation of the generalized 
eigenvalue problem into a normal eigenvalue problem; 2) 
solution of the eigenvalue problem; 3) matrix-vector products 
to obtain the contact modes; 4) matrix-matrix product to 
obtain the contact self-energy. 

1) Translation of the generalized eigenvalue problem into 
a normal eigenvalue problem: A straightforward 
implementation of such a transformation is published in (13) 
of [5] 

 PPHM 1)(  
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Equation (1) requires a matrix inversion and a product of 
matrices of complex type to solve for M. In NEMO5, (1) is 
rewritten as a linear equation 

                                  PMPH  )( 

The M matrix of the last equation can be obtained by 
solving a linear equation instead. It is important to mention 
that for electrons in nanowire structures without explicit spin-
orbit coupling in the tight binding representation, all the 
matrix elements of the Hamiltonian are real. As a result, all 
matrices in (2) can be solved with real type matrix operations 
rather than complex type. Table I shows a speed up of about a 
factor of 6, by solving (2) in real type operations instead of 
solving (1) in complex type. 

2) Solution of the eigenvalue problem: As shown in (14) 
and (15) of [5], the transformation of the generalized 
eigenvalue problem into a normal eigenvalue problem results 
in the reduction of the actual matrix equation size. The 
relevant eigenvalue problem to be solved is written as 

 222 )1(
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 M2 is the lower right block of the M matrix. Similar to 1), 
the M2 matrix is a real matrix which allows usage of a real 
type eigensolver (Lapack in this work) [8]. Table I shows that 
this gives a speed up of about 4.3 times comparing to calling 
the complex type eigensolver. 

3) Matrix-vector products to obtain the contact modes: 
After solving the eigenvalue problem, the contact modes are 
calculated from (16) of [5]: 

                            211 )1(    Me ik


Where {φ2} are the complex eigenvectors and M1 is the 
upper right block of the M matrix [5], which is a real matrix. 
Consequently (4) is a real matrix-complex vector product. 
However, the eigenvectors {φ2} from the real type (Lapack) 
eigensolver are combinations of real vectors {ψ} with the 
following rules [8] 

a) If the j-th eigenvalue is real, it holds 

 )()(2 jj   

b) If the j-th and the j+1-st eigenvalues form a complex 
conjugate pair, it holds 

 )1()()(2  jijj  

This allows first performing the product between the real 
matrix M1 and the real vectors {ψ}, and then combining the 

result vectors to generate {φ1} following the rules described in 
(5) and (6). This leads to a speed up of about a factor of 12 
compared to a direct solution of (4) as shown in Table I. 

4) Matrix-matrix product to obtain the contact self-
energy: The solution of the contact self-energy requires the 
surface Green’s function gR and the contact modes Ф={φ1 φ2}† 
[5] 
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Here, D00 is the contact Hamiltonian, and T01 is the 
coupling Hamiltonian between the respective contact and the 
device. Equation (7) involves a couple of matrix-matrix 
products and a matrix inversion. However, if only ΣR is 
required, the explicit solution of gR can be avoided such that 
(7) can be rewritten as a linear equation 
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Since T01 is very sparse and Ф is usually a rectangular 
matrix, solving the linear equation in (8) is much more 
efficient than the matrix inversion and products in (7). A speed 
up of about 5 times is achieved compared to an explicit 
solution of gR in (7).  

In summary, table I shows a speed up of about 5 times in 
the overall timing of self-energy calculation when all above 
improvements are used. 

B. QTBM 
The QTBM method requires the solution of a linear 

equation to obtain the propagating wave functions in the open 
device. The left hand side (LHS) of this linear equation is the 
device Hamiltonian attached with the contact self-energies 
from the two contacts. The right hand side (RHS) of the 
equation represents the charge injection from the contacts, 
which is usually described by the contact propagating modes 
Фp, the phase factor eikΔ and the surface green’s function gR. 
The solution of the QTBM equation represents the 
propagating wave functions of the device. These wave 
functions are used to solve the transmission and the charge 
density. The hotspots of the QTBM method are: 1) the 
formation of right hand side matrix of the QTBM equation and 
2) the solution of the linear QTBM equation. 

1) Formation of right hand side matrix of the QTBM 
equation: The RHS of the QTBM equation can be written as  

                  
)(~ 1,00010
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Equation (9) can be rewritten such that it does not depend 
on gR explicitly: 



363

                               
 ikp

p
R eRHS ~



Equation (10) involves fewer matrix operations, and more 
importantly avoids solving gR explicitly. This allows applying 
the improvement of A 4) discussed above. Then, a speed up of 
about 35 times for the formation of the RHS is observed 
compared to a direct solution of (9). 

2) Solution of the linear QTBM equation: Since the LHS 
of the QTBM equation agrees with the device Hamiltonian 
added by the self-energies of the two contacts, it is a very 
sparse matrix except for two small dense blocks at the upper 
left and lower right matrix corner. Mumps [9] is found to be 
very efficient for factorizing this matrix, thus it is often used 
as the preconditioner for the linear equation. The device can 
be partitioned into several slabs along the transport direction 
so that the LHS matrix is divided into several slab-
corresponding matrix blocks. In this way, the linear QTBM 
equation can be solved spatially (block) distributed in parallel. 
Furthermore, for nanowires without explicit spin-orbit 
coupling, the elements in the center blocks of the LHS matrix 
are real, so that these blocks can be solved with real-type 
operations [10]. This parallelization scheme gives speedup 
factors depending on the available hardware. 

C. NEGF 
The NEGF method requires the solution of the retarded 

Green’s function (GR) and lesser Green’s function (G<) in the 
device to obtain the transmission and the charge density. The 
key operation of the NEGF method is the inversion of a matrix 
with the same rank as the device Hamiltonian. The solution 
time and the peak memory usage increases dramatically as the 
device dimension increases. The recursive Green’s function 
method (RGF) [4] is well-known for improving the efficiency 
of NEGF calculation. It allows solving the transmission and 
the charge density with only a few blocks of the GR matrix. 
The RGF algorithm divides the device into slabs along 
transport direction and solves the relevant GR blocks 
recursively. Afterwards G< matrix is solved to obtain the 
charge density. It requires to store three matrices: 1) the 
diagonal blocks of the retarded Green’s function gr for forward 
iterations, 2) the block diagonal and a one column block of the 
retarded Green’s function GR for backward iterations, and 3) 
the diagonal of the lesser Green’s function G<. 

In RGF, the GR matrix is represented as: 
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Where ti,i+1 is the coupling Hamiltonian between two 
adjacent slabs, i is the index of slabs, and N is the index of the 
last slab. Equation (11) shows that the ith diagonal block and 
column block of GR only depends on the ith block of gr. After 
GR is solved for slab i, the corresponding gr block is not 
needed and can be deallocated. 

The G< matrix in RGF is represented as: 

                     
)( ,,,,

d
iiiis

d
iidii AAfAfiG  











R
Ni

d
NN

R
Ni

d
ii

R
ii

R
iiii

GGA
GGiA

,,,,

,,, )(





Where fs, fd are Fermi distributions of source and drain 
contacts, A is the spectral function, and i is the index of slabs. 

Equations (12) and (13) show that the A matrix and G< 
matrix can be solved for each slab i during the backward 
iterations of RGF. After G< is solved for slab i, the 
corresponding GR blocks are not needed anymore and can be 
deallocated. Furthermore, since only the diagonal of G< is 
required for the charge density, the storage of the whole 
diagonal block of G< is avoided. Consequently, during the 
backward iterations no extra matrix blocks except for the 
diagonal elements of G< are stored, such that the peak memory 
of RGF algorithm is dominated only by gr blocks in the 
forward iterations. Table II shows that with these 
improvements the peak memory is minimal and does not 
increase significantly with the number of energy points. 

TABLE I. Timing comparison in seconds, for 1 energy point. std, the state of 
literature, opt, the optimized way discussed in this work. 

 std  opt std/opt 
Part A. 1) 11.7 2 5.9 
Part A. 2) 63.4 14.8 4.3 
Part A. 3) 12.5 1 12.5 
Part A. 4) 12 2.5 4.8 
Σ total 99.6 20.3 4.9 
Part B. 1) 24.3 0.7 34.7 

TABLE II.  Peak memory usage for RGF in Gigabytes. std, the state of 
literature, opt, the optimized way. 

 std  opt 
1 energy point 4.56 1.63 
3 energy points 13.8 1.78 
5 energy points 22.95 1.89 

 

III. CONCLUSION 
The algorithm details of contact self-energies, the QTBM 

and the NEGF/RGF methods as well as their implementations 
in NEMO5 are discussed. A benchmark is performed on a 
3nm diameter, 20 nm long Si nanowire in atomistic 10 band 
tight binding to demonstrate the improvements in NEMO5’s 
performance.  
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