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Abstract—We describe a technique to overcome the numerical
difficulties in the accurate description of the small signal AC
response of the thin electrical double layers at the surface of
impedimetric biosensor electrodes. The technique significantly re-
duces the computational burden of the calculation, thus enabling
the fast simulation of many analyte configurations.

I. INTRODUCTION

Numerical simulation of electronic biosensors is an emerg-
ing research field (e.g. [1], [2], [3], [4], [5], [6], [7]) to
support engineering of integrated devices for personalized
medicine [8], [9], [10], [11], [12]. Since at high molarity the
electrolyte Debye screening length (λD) is much shorter than
typical sensor dimensions, challenging multiscale-multiphysics
simulation problems arise. Issues are especially severe for
impedimetric sensor arrays [11], [12] because every electrode
has on top a thin electrical double layer (EDL) with rapidly
changing ion concentrations (nm) and potential (φ) [13] which
in turn demand either a fine mesh or special purpose boundary
conditions [7]. To make things even worse, very accurate
calculations are necessary because the useful signal is a
small change of the electrode admittance with respect to a
reference condition (∆Y =Y -Y0) due to changes of the analyte
configuration (e.g. introduction of a biomolecule, drift of a
biomolecule’s position with respect to the electrode, etc.).

In this paper we propose a technique to efficiently account
for the EDLs in computing the small signal AC response of
impedimetric sensors [11], [12]. The technique significantly
reduces the need of fine meshing the EDLs, thus enabling fast
simulation of many analyte configurations.

II. METHODOLOGY

We illustrate the method with reference to the nanoelec-
trode array biosensor presented in [11] (Fig.1), and we use
the 3D numerical model of [14] to prove the effectiveness
of the proposed approach. The electrode admittance (Y ) is
computed solving the Poisson-Drift-Diffusion (otherwise de-
noted Poisson-Nernst-Planck, PNP) equations for small signal
sinusoidal excitation [14]. The array behaves as a multi-
terminal device (Fig.2a), and due to the small λD accurate
simulations require a very fine mesh next to each electrode,
especially at low frequency.

To gain a first insight into the problem, we make use of

the analytical 1D model of the electrode response presented
in [1] (see Fig.1, left), which states that the admittance per
unit area between two electrodes at a distance L � λD with
a symmetric 1:1 electrolyte in between, can be written as:

ytot = jωε
κ

2ξ + jωκL
(ξ + jω) (1)

where κ2 = (ξ + jω)/D is the squared inverse screening
length, ξ = 2q2µn0/ε the electrolyte cut-off angular frequency,
µ the ion mobility (in m/Ns), D=µkT the diffusivity, n0

the bulk ion concentration. Note that λD = < (1/κ). We
immediately see that Eq.1 can be rewritten as :

1
ytot

=
2
ydl

+
1
yhf

, (2)

where yhf = (ξ + jω)ε/L is the high frequency limit of the
electrode admittance, and:

ydl = jωεκ
ξ + jω

ξ
(3)

is the double layer admittance. Eq.3 shows that ydl is inversely
proportional to the scale length 1/κ which provides an estimate
of the thickness of the EDL. The double layer capacitance
cdl = = (ydl) /ω has a ω3/2 dependence and tends to infinity
at high frequency, whereas yhf tends to a constant capacitance
per unit area chf=ε/L. These observations suggest to represent
the EDL as a lumped admittance in series to an electrode in
direct contact to the bulk electrolyte. This representation can be
generalized to a multiterminal nanoelectrode array as described
in the next paragraphs.
Firstly, we group the array electrodes as follows (Fig.1 right

and Fig.2): the grounded ones are connected to terminal C.
Among the remaining N electrodes (which we assume all
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Figure 1: Left: Sketch of the 1D system solved for by the analytical
model, Eqs.1,3. Right: Nanoelectrode array sensor. Electrode radius
rel=75 nm [11].
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biased at the same DC and AC voltage, as in [11]), we group
in terminal P those whose EDL is affected by changes in
the analyte configuration, while the others are grouped in
terminal A. Detailed knowledge of the ion concentrations nm

and potential φ in the EDL for all analyte configurations is thus
necessary only for electrodes which belong to set P ; not for
those of set A. In fact, by definition, the EDLs of electrodes
in C and A stay the same for all configurations. Note that if
the analytes are smaller than the electrode pitch, and with a
proper definition of the configuration space, P cointains only
one electrode, whereas the A set groups many of them. We
now denote M the terminal where the AC current, hence, the
admittance is measured, and we start assuming that M = P .
We will then discuss the case when M is in group A.

The definitions above allow us to model the device as a
2-port with admittance matrix:

Y2 =
[
YPP YPA

YAP YAA

]
=
[P

j∈P

P
l∈P Yjl

P
j∈P

P
l∈A YjlP

j∈A

P
l∈P Yjl

P
j∈A

P
l∈A Yjl

]
where the Yjl are the elements of the device N -port Y matrix.

As suggested by Eq.2, we write the k-th electrode ad-
mittance, Yk (k ∈ P ), as the series connection of the EDL
admittance, Ydlk, given by the rapidly space-varying field near
the electrode, and the bulk admittance, Ybk, given by the field
that deeply penetrates into the electrolyte:

1
Yk

=
1
Ydlk

+
1
Ybk

. (4)

The Ydlks can be computed once for all analyte configurations.
We transform the 2-port into a new 2-port with admittance
matrix Y2i connected to the admittances YdlC , YdlA (Fig. 2c),
respectively representing the EDLs of the electrodes in groups
C and A. Clearly, only Y2i is affected by changes in the
analyte configuration, whereas YdlA and YdlC are not.

If ports M=P and A are both biased at VH , the admittance
between port M and ground is Y =YPP +YPA. To identify the
unknown admittances YdlC and YdlA and then calculate Y for
all configurations of interest, we can thus proceed as sketched
in Fig.3; namely:

(a) (b)

(c) (d)

Figure 2: AC small signal representations of the nanoelectrode array:
(a) multi-terminal; (b) 2-port; (c) 2-port with external lumped ele-
ments (M =P ); (d) 3-port with external lumped elements (M 6=P ).

1) we extract the k-th terminal double layer admittance Ydlk

in the reference configuration using Eq.4 where 1/Ybk the
admittance obtained when the EDL is eliminated by setting
Dirichlet boundary conditions (DBCs). If the electrodes are
all identical (as is typically the case in regular arrays [11],
[12]), we can then easily calculate YdlA and YdlC as the
parallel connection of an appropriate number of Ydlk;

2) we set DBCs at all terminals except M (which eliminates
the corresponding EDLs and the need for a fine mesh next
to the electrodes) and compute the intrinsic Y2i;

3) according to the model of Fig.2c, and denoting ∆ the deter-
minant of Y2i, YiP = YiPP +YiPA and YiA = YiAP +YiAA,
we compute the admittance at M as:

Y ≈ Y ′ = YdlC
∆ + YiP YdlA

∆ + YiAA YdlC + YdlA (YiA + YiP + YdlC)
(5)

4) we change analyte configuration, go back to steps (2)-
(3), where meshing of only one EDL is necessary, and
efficiently recompute Y ′ for the new configuration.

Since the EDLs vanish at small distance from the electrodes,
simulations at step (1) can be run (with remarkable time
saving) on a small subset of the array and imposing DBC on
all electrodes other than k. We emphasize that DC bias, Stern
layers [13] and self-assembled monolayers (SAMs, assuming
that they are much thinner than the separation between the
electrodes) should be included in the simulations used to
calculate YdlA and YdlC .

Let us now consider the case where M is one of the
electrodes in A and it is therefore distinct from P . A 3-port
model is now mandatory (Fig. 2d). The system matrix is:

Y3 =

[
YMM YMP YMA

YPM YPP YPA

YAM YAP YAA

]
and the expression for the admittance at M is now:

Y ' Y ′′′ = (YdlCYdlM (YdlAYiM + ∆21 + ∆22))

/
“

∆ + YdlC∆22 + YdlM (YiAAYdlC

+ YdlA(YiA + YdlC + YiP + YiM ) + ∆11 + ∆12 + ∆21 + ∆22)

+ YdlA(YdlCYiMM + ∆22 + ∆23 + ∆32 + ∆33)
”

(6)

where ∆ is the determinant of Y3i, ∆ij is the determinant of
the matrix obtained eliminating row i and column j from the
matrix Y3i, YiM =YiMM+YiMP+YiMA, YiP =YiPM+YiPP+
YiPA and YiA =YiAM+YiAP+YiAA. The steps to compute the
unknowns in Eq.6 and the YdlA, YdlM and YdlC are the same
explained for the two-port case (see also Fig.3).
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Figure 3: Flowchart of the procedure to calculate Y ′ when M=P .
The outer loop on the right (steps 2-4) is repeated for each analyte
configuration, while YdlA and YdlC are retained. Step 1 is executed
only once. Similar procedures are used to calculate Y ′′ and Y ′′′.



355

The method and Eqs.5-6 can be further generalized to
cases where the EDLs of more than one active electrode
have to be meshed and resolved or when VM 6= VA. An
alternative method, inspired to the mixed mode approach [15],
would be to solve the intrinsic system (i.e., with no EDLs
on A and C) simultaneously with the equations that give the
potential drop on the Ydlks. The mixed mode approach is
fully general and requires to run only one simulation for each
analyte configuration (compared to 2 in the 2-port procedure),
but it greatly complicates the algorithm implementation and
it may introduce numerical issues because the values of the
matrix elements in the rows that correspond to the Ydlk are
of very different magnitude with respect to those in the rows
corresponding to the intrinsic part of the system under study.

III. RESULTS

We tested accuracy and numerical efficiency of the method
by investigating the response of the nanoelectrode sensor
array in [11], [16] to neutral spherical particles representative
of various biomolecules: large proteins (rp = 10nm) [17],
viruses (rp = 500 nm) [18], and cylindrical DNA strands
(rp = 1.25 nm, h=13.2 nm corresponding to 40 basis) [19].
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Figure 4: Left: exact total admittance at port M=P in the absence of
molecules (Y0, reference configuration) for a few DC bias voltages.
Right: total admittance at port M (Y0), one-electrode EDL admittance
(Ydl), and intrinsic admittance at port M (YiM ). DC bias VDC=0 V;
NaCl bulk electrolyte concentration n0=10 mM.
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Figure 5: Change in admittance (left) and corresponding change in
capacitance (right) due to the introduction of a spherical dielectric or
conductive particle (rp= 10 nm) on the center electrode of the array
calculated at M=P with exact 3D simulations (∆Y , ∆C; all EDLs
included), with the proposed method (∆Y ′, ∆C′; lumped elements
at k/∈M ) and neglecting EDLs for k/∈M (∆C′′). ∆Y ′ and ∆C′ are
excellent approximations to ∆Y , ∆C at all frequencies. ∆Y ′′ and
∆C′′, instead, deviate at low frequency. Particle height dz = 20 nm;
VDC=0 V; n0=10 mM.

We typically simulate a subset of 5×5 electrodes or less
depending on particle size. The molecule is located next to the
center electrode (P ) and no SAM is present unless otherwise
specified.

Fig.4 reports the P -electrode admittance in the absence
of molecules (Y0, reference configuration) calculated with
the exact 3D reference model (i.e., with all EDLs included,
left, [14]), the intrinsic Yi (EDL on P only) and the one-
electrode EDL admittance Ydl (right). Ydl is comparable to Y
at low frequency, whereas |Ydl|�|Y |'|Yi| at high frequency.
Fig. 5 shows the change in admittance and in capacitance
∆C== (∆Y ) /ω due to dielectric or metallic particles calcu-
lated with the exact 3D model and with the proposed lumped
element approximation of the EDLs (∆Y ′). The excellent
agreement observed at all frequencies demonstrates the accu-
racy of the proposed method.

Since at high frequency YdlA and YdlC are often much
larger than Y , we also computed Y ′′=limYdlA,YdlC→∞ Y ′.
We see that Y ′′ ' Y ′ at high frequency, which suggests to
further simplify the simulations by neglecting the EDLs on all
counterelectrodes except P whenever Ydl is very large, i.e. at
large salt concentration and high frequency. The inclusion of
YdlA and YdlC in the model is instead mandatory for accurate
results at low frequency. Similar conclusions were obtained for
any particle height, dz , and radius, rp, provided the analyte
interacts only with electrode P . This is demonstrated in Fig.6,
which reports ∆C due to the rp=500 nm particle in presence
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(b) dz = 1 nm, 10 mM, DC 0.1 V
Figure 6: Change in capacitance due to a spherical dielectric or
conductive particle (rp = 500nm) at the center electrode M=P of the
array calculated with the reference full 3D simulations (∆C) and the
lumped element model of Fig.2.c (∆C′ and ∆C′′). ∆Y ′ and ∆C′

are excellent approximations of ∆Y and ∆C at all frequencies; ∆Y ′′

and ∆C′′ only at high frequency. ¿SAM thickness 2.5nm.
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(b) dz = 1 nm, 10 mM, DC 0.1 V
Figure 7: Same as in Fig. 6, but calculating ∆C at the first neighbour
from the central electrode (M 6= P ). The results given by the 2-port
and 3-port models (∆C′ and ∆C′′′) are shown. Note that ∆C′′′ is
a good approximation of ∆C at all frequencies while ∆C′ is not.
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of a 2.5nm thick SAM and for varying position, DC bias and
salt concentration.
Fig. 7 shows the results when M 6= P and the 3-port model is
used. The comparison with the 2-port approximation (where
we included the electrodes P in set A, and calculated YdlA as
the parallel of only those Ydls that are not in series with P )
demonstrates the need of a 3-port representation when M 6= P .
Fig.8 shows the change in admittance ∆Y =Yss − Yds and
capacitance ∆C when a single strand DNA attached to a
2.5 nm SAM on top of the electrode is hybridized with a
complementary sequence, thus forming a double strand (ds).
The agreement with the reference full 3D simulations is again
excellent.
Fig.9 shows the relative speedup between our method and
calculations where all EDLs are explicitly meshed for all cases
discussed above. A remarkable speedup factor is observed,
roughly proportional to the square of the ratio between the
number of mesh-points in the systems without and with the
lumped elements.

IV. CONCLUSION

A technique is proposed to replace with suitable lumped
elements the explicit meshing and simulation of the electrodes’
EDLs in array impedimetric sensors. The exact implementation
of the method requires careful examination of the physical
system, but once the appropriate 2-port or 3-port model has
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Figure 8: Change in admittance (left) and capacitance (right) due to
DNA hybridization. The single (ss) and double (ds) DNA strands are
modeled as in [16]. Calculations are done with exact 3D simulations
explicitly accounting for all EDLs (∆Y =Yss-Yds, ∆C== (∆Y ) /ω),
with the proposed procedure based on lumped elements (∆Y ′, ∆C′)
and neglecting all EDLs except the one on M=P (∆Y ′′, ∆C′′).
The DNA is attached to a 2.5 nm SAM and stands upright from
the electrode center; n0=150 mM. ∆Y ′ and ∆C′ are excellent
approximations to ∆Y , ∆C at all frequencies. ∆Y ′′ and ∆C′′ only
at high frequency.
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Figure 9: Simulation speedup between the proposed method (∆Y ′,
i.e. EDL only on M and lumped elements for k /∈M ) and the case
where all EDLs are explicitly meshed and accounted for (∆Y ) versus
the ratio of the number of mesh points in the grids. M=P . |VDC |=0.1
V. The speedup is a factor of 2/3 smaller when M 6= P because one
extra simulation is required for each analyte configuration.

been identified, the method offers the possibility to remarkably
decrease the mesh size and to accurately examine with largely
reduced computational burden many analyte configurations.
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