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Abstract—The paper presents a method for quantum transport
simulations in nanowire (NW) MOSFETs with inelastic scattering
processes incorporated. An atomistic tight-binding Hamiltonian
with realistic electron-phonon interaction is transformed into an
equivalent low-dimensional transport model which can be easily
used in full-scaled NEGF simulations. The utility of the method
is demonstrated by computing IV characteristics in n-Si NW
devices.

I. Introduction

Recent technological progress has stimulated a growing in-
terest to quasi-one-dimensional quantum transport in nanowire
(NW) structures. Experimental studies of Ge/Si NWs have
shown excellent gate control, high drain current and reduced
sensitivity to temperature [1], [2]. This opens novel oppor-
tunities for the design of nanoscale devices and for exploring
quantum transport in low-dimensional systems [3]. Theoretical
modeling of such nanoscale devices are required to take into
account realistic band structure of mobile carries and inelastic
scattering effects [4]. The non-equilibrium Green’s function
(NEGF) formalism with a tight-binding type of atomistic
Hamiltonian provides a general framework for such studies
[5], [6]. However, complexity of the electronic Hamiltonian
and large number of possible electron-phonon (e-ph) scat-
tering processes make the atomistic transport simulations
prohibitively difficult.

In the present work we have developed a method to over-
come this difficulty. We construct a low-dimensional rep-
resentation of one-electron states within an energy interval
relevant to the transport phenomena and obtain an equivalent
model (EM) which greatly reduces the computational costs of
atomistic transport simulations and allows inelastic effects to
be incorporated. We employ a strain-dependent sp3d5s∗ tight-
binding model (TBM) [7] for the electrons and a generalized
Keating model for phonons [8], [9] in order to calculate the
inelastic scattering rates and phonon-limited mobility includ-
ing couplings between all possible electronic and phononic
states. We use these exact results as reference data and show
that inelastic interaction can be reproduced by a small number
of effective phonon modes with properly chosen coupling
parameters. We demonstrate our approach by constructing

a computationally cheap inelastic EM in various n-Si NW
devices and computing their IV characteristics in the presence
of the inelastic e-ph scattering.

II. Electron-phonon interaction and low field mobility

We first consider the electron-phonon interaction in a
nanowire close to equilibrium. Under applying a constant elec-
tric field E, the distribution function fnk for the electron state in
the n-th band with wave vector k is given by fnk = f 0

nk+eEηnk,
where f 0

nk ≡ f 0(Enk) is the equilibrium Fermi distribution
function. For a weak electric field the deviation ηnk can be
found from the linearized Boltzmann equation

∂ f0
∂Enk

Vnk =
∑
mν

∫
dq M(nk,mk′)

[
ηnk(1 − f 0

mk′ ) − ηmk′ f
0
nk

]

− M(mk′, nk)
[
ηmk′ (1 − f 0

nk) − ηnk f 0
mk′
]
, (1)

where M(nk,mk′) is the scattering rate between electron states
(n, k) and (m, k′ = k + q) and Vnk = �

−1∂Enk/∂k is the group
velocity. Once equation (1) has been solved, the mobility is
given by

μ = e
∑

nk Vnkηnk∑
nk f 0

nk

. (2)

Performing such calculations in a realistic nanostructure re-
quires considerable computer resources. The electron-phonon
interaction is introduced by expanding a strain-dependent TB
Hamiltonian H = H(R0

a) + (∂H/∂Ra) δRa with respect to
quantized normal modes of the atomic displacements δRa =

Ra−R0
a. The contribution from a particular phonon mode (νq)

to the total rate is given by

Mνq(nk,mk′) =
|〈Ψmk′ |T νq|Ψnk〉|2

2ωνqMSi

[
NBδ(Emk′ − Enk − ωνq)

+ (1 + NB)δ(Emk′ − Enk + ωνq)
]
, (3)

where T νq =
∑

a(∂H/∂Ra) eνa(q) is the effective interaction
within one unit-cell of the wire, Ψnk are the unit-cell normal-
ized Bloch states, and (ωνq, eνa(q)) are the phonon frequencies
and the corresponding eigenstates. Figure 1 shows an example
of the phononic band structure in a [100] Si NW obtained from
the generalized Keating model [8], [9]. In order to integrate
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the delta-functions of energy conservation in Eq. (3), the grid
of q-points in the first Brillouin zone must be taken dense
enough. Typically, ∼ 400–600 q points are required to achieve
convergence and the total number of scattering processes may
be as large as ∼ 106–107 making the mobility calculation very
heavy.
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Fig. 1. Phononic band structure of a [100] Si NW with a rectangular cross
section 2.2 × 2.2 nm2. The DOS is shown in the right panel.

III. Calculation of electron mobility in EM representation

The first step of our method is to reduce the original TBM
representation. For any TB model with NTBM orbitals per
unit cell, the EM method [10] offers a regular procedure to
construct NEM � NTBM basis functions which give the same
physics within a desired energy interval. Thus, the one-electron
states can be calculated in the form

Ψnk = Φψnk (4)

where Φ is the constant NTBM × NEM real-valued basis matrix
with orthogonal columns ΦTΦ = 1 and the EM Bloch states
ψnk are found from a NEM-dimensional eigenvalue problem.
Figure 2 shows examples of the band structure in three n-
Si NWs used in the simulations. The red points show the
results from the EM (NEM = 44 (a), 54 (b) and 57 (c))
which reproduce ΔE ≈ 0.55 (a), 0.35 (b) and 0.3 eV (c) at the
bottom of the conduction band. In fact, not all the states in
Fig. 2 are needed to compute the room temperature mobility.
Similar results can be obtained by using smaller EMs with
ΔE ≈ 0.2 eV. The freedom in choosing EMs of different size
and reliable energy interval provides a general tool to optimize
the EM calculations and test convergence and accuracy of the
results [10].

The matrix elements can now be evaluated in the EM
representation 〈Ψmk′ |T νq|Ψnk〉 = 〈ψmk′ |tνq|ψnk〉, where tνq is a
constant interaction matrix obtained by the basis transforma-
tion of the nonzero blocks of T νq. The computational time
is reduced by a factor of (NEM/NTBM)2 ∼ 10−4 making the
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Fig. 2. Conduction band in n-Si NWs with a rectangular cross section 2.2×2.2
(a), 3 × 3 (b), and 4 × 4 nm2 (c) along [100] crystal direction. The red points
represent the EM used in the simulations.

calculations in Eqs. (1-3) trivial. Figure 3 shows two examples
of the relaxation time τ−1

t = (∂ f0/∂Enk) Vnk/ηnk obtained by
solving the Boltzmann equation in a [100] n-Si NW with
rectangular cross section 2.2 × 2.2 nm2 which only takes ∼ 1
hour on an ordinary PC. The fact that τt is close to the total
scattering rate τ−1

0 =
∑

mk′ W(nk,mk′) strongly suggests that
one can disregard the phonon dispersion and obtain a simpler
model with similar inelastic transport properties.
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Fig. 3. Relaxation time τt (red circles) for low and high carrier concentration
in a [100] n-Si NW with a rectangular cross section 2.2 × 2.2nm2, computed
by solving the Boltzmann equation. The black circles refer to the total rate
τ−1

0 =
∑

mk′ W(nk,mk′).

IV. Model of random optical phonons

In scope of the NEGF method, the full Green’s functions
and inelastic self-energies need to be computed and storied
at many energies points. Such full-scale atomistic simulations
in the original TBM picture simply cannot be done and the
EM method offers a promising way to solve the problem. For
example, in a ∼ 30-nm-length Si NW, the total number of
EM quantum states can be made as small as 2–3× 103 which
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allows the Dyson and Keldysh equations with arbitrary self-
energy terms to be solved easily without much time or storage
problems. On the contrary, constructing the self-energy terms
Σe−ph themselves becomes the most consuming part of such
EM NEGF simulations. Indeed, computing the self-energy
involves operations similar to the ones for the scattering rates
in Eq. (1) and these must be repeated at many energy points
at each step of the self-consistent iteration.

Here we propose an inelastic EM model which generates
analytical block-diagonal e-ph self-energy terms and thus
optimizes the NEGF simulations. The model is obtained by
substituting the actual phonons in the system by a set of simple
equidistant dispersionless modes and adjusting the coupling
parameters in order to reproduce the exact electron-phonon
scattering rates and phonon-limited mobility. To realize this
program, we assume a block-diagonal electron-phonon inter-
action

Hn
e−ph =

∑
νq

T νeiqa0n

√
2MSiων

{bν(q) + b+ν (−q)}, (5)

where T ν is the EM interaction operator (NEM × NEM matrix)
for the ν-th phonon mode, n numerates unit-cell and a0 is its
size in the transport direction. Equation (5) is almost the same
as the exact electron-phonon interaction term except that we
neglect the phonon dispersion in T ν, ων and omit a minor part
of the interaction which comes from the atomic deviations
δRa in neighbor cells. Instead of trying to estimate each
particular term T ν we introduce equidistant fictitious phonons
which are required to “accumulate” the effect of many original
modes with similar frequency. For example, in computing the
scattering rates we meet the terms ∼ ∑ν ω

−1
ν T ν

i jT
ν
kl
∗ where i, j,

k, l are the EM indices for electronic states. The contribution
from many modes around a fictitious phonon with frequency
Ω can be approximated by
∑
ων≈Ω

1
ων

T ν
i jT

ν
kl
∗δ(ΔE ± ων) ≈ 1

Ω
TΩi j T

Ω
kl
∗
δ(ΔE ±Ω). (6)

As follows from the definition of T ν after Eq. (3), various
terms in Eq. (6) have generally very different amplitudes and
phases. For a dense enough phonon spectrum, the quantity
TΩTΩ in the r.h.s. is analogous to the average of a product of
two random symmetric matrices and can be approximated by

TΩi j T
Ω
kl
∗ → AΩ

(
δikδ jl + δilδ jk

)
. (7)

We note that Eq. (7) remains invariant under arbitrary orthog-
onal transformation of the EM basis. Since the terms TΩ enter
any physical results only in the form of Eq. (7) the parameters
AΩ specify the electron-phonon interaction completely. For
example, the matrix element for the scattering by the fictitious
phonon Ω is now given by (see Eq. (3))

MΩ ∼
∣∣∣〈ψmk′ |TΩ|ψnk〉

∣∣∣2
Ω

=
AΩ

Ω

[
1 +
∣∣∣〈ψ∗mk′ |ψnk〉

∣∣∣2] . (8)

The inelastic Σe−ph in the NEGF formalism are calculated in
a similar way. For example, the contribution from a mode Ω

in the self-consistent Born approximation is given by

i
4πMSiΩ

∫
dε
[
TrG(E − ε) + G̃T (E − ε)

]
DΩ(ε) (9)

where DΩ is the usual equilibrium function for frequency Ω
and G̃ is the block diagonal part of the corresponding Keldysh
Green’s function. Equation (9) gives analytical block diagonal
inelastic self-energies for the system of NEGF equation which
can be easily solved.

V. Model parameters and EM NEGF simulations

We now assume a set of phonon modes Ωn with yet
unknown coupling constants An. We use equidistant modes
in order to reduce the number of mutually coupled Green’s
functions. Our strategy will be to use the exact mobility
calculations as a reference and adjust the coupling parameters
An in order to reproduce the electron-phonon scattering rates.
We thus obtain a numerically cheap inelastic transport model
which mimics all the properties of the original TBM and
can be employed on similar grounds for the full-scale NEGF
simulations.

In practice, we find the coupling parameters which minimize
the quantity

S =
∑

i

[∑
nk

F(Enk − Ei)Δτ0(nk)
]2
, (10)

where Δτ0 is the deviation of the scattering rate from the
exact result and F is a zero centered weight function, which
is introduced in order to avoid too strong influence of any
particular point (nk) and smoothen the contribution from many
states around the reference energy Ei. We use F = f0(1 − f0),
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Fig. 4. Constructing the EM with equidistant dispersionless phonons for
ΔΩ = 20 and 5 meV. Upper panels: optimized scattering time τ0 (red circles)
versus the exact data from Fig. 3 (black circles). The insets show the effective
strength A/Ω of the electron-phonon interaction. Lower panels: the room
temperature mobility as a function of the carrier concentration. The red
triangles refer to the equidistant phonon model and the black lines to the
full spectrum in Fig. 1.
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Fig. 5. The room temperature mobility as a function of the carrier
concentration in [100] Si NWs in Fig. 2. The black lines show the exact
result for the full phononic spectrum. The red triangles refer to the optimized
model of 13 equidistant optical modes with ΔΩ = 5 meV.

where f0 is the Fermi function for T = 100 K with 10–20
reference Fermi energies. Figure 4 shows τ0(nk) as a function
of energy E(nk) in two optimized models with ΔΩ = 20 meV
(3 modes) and ΔΩ = 5 meV (13 modes). The corresponding
room temperature mobility is shown in the lower panels.
The model with ΔΩ = 5 meV is found to be in quantitative
agreement with the exact results and can be used in the NEGF
simulations. Similar accuracy has been found in the optimized
model for n-Si NWs of larger cross section (see Fig. 5).

Figure 6 presents the calculated IV characteristics in a
[100] n-Si NW MOSFET at room temperature with dopant
concentration of 1020 cm−3 at applied bias VSD = 0.1 V.

Figure 7 also shows an example of the mobile charge
distribution at two contacts and illustrates convergence of
the self-consistent Born iterations. The reduction of the drain
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with rectangular cross section 2.2 × 2.2 nm2. The black lines with triangles
refer to the ballistic current and the red lines with triangles to the current with
electron-phonon scattering.
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Fig. 7. Mobile charge spectrum (upper panels) and self-consistent Born
iterations for the drain current (lower panels) in a [100] n-Si NW with a
rectangular cross section 2.2 × 2.2 nm2. The ballistic charge spectrum in the
same potential is shown for comparison.

current and the phonon subband structure are found to be in
a qualitative agreement with the results of the perturbation
theory which further justifies the applicability of the inelastic
EM with optimized equilibrium parameters. We finally note
that the EM approach makes it possible to perform the full-
scale NEGF simulations with all the phonon modes included
and thus obtain a numerical estimate for the accuracy of the
present method away from equilibrium. Such test calculations
are currently in progress.

VI. Summary

The method is formulated to construct a low-dimensional
model Hamiltonian which reproduces both ballistic and non-
ballistic transport in NWs with atomistic resolution. The model
makes it possible to utilize the full power of the NEGF
formalism and study inelastic scattering processes in realistic
nanostructures.
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