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Abstract—Improvements in electrostatic 
allow FinFETs and trigate FETs to extend M
to gate lengths of 15-20nm. Further scaling 
better control that is provided by multigate
multigate FET architectures, gate length scalin
3 nm has been demonstrated experimentally a
respectively. At these dimensions, quantum con
to appear and new effects such as drain cur
and tunneling through soft barriers can be o
SET and metal-semiconductor transitions 
quantum confinement present opportunities f
devices. 
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I.  INTRODUCTION 
The semiconductor industry has relen

transistor size over the last 50 years, doub
density every 18 months (Figures 1 and 2). 
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processors (GPU) from different vendors are show

Figure 2. Evolution of the gate length with time
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Figure 3: Different types of 
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effects if the gate is at least 6 times longer tha
instance, in the case of a double-gate MO
show that the subthreshold swing, SS, in
length is decreased according to the followi
valid for LG>2λ  [8]. 
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Figure 4. “Competition” between x, y and z components
channel region of a MOSFET. 

Figure 5. Drain-induced barrier lowering (DIBL) and su
multiigate transistors as a function of the normalized gate

The analytical expressions for the nat
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Table 1: Natural length, λ , for d
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and narrow transistors. These correspond to the successive 
filling of subbands as gate voltage is increased (Figure 
9 .[17]. If the section is small enough, these oscillations can 
be observed at room temperature [18]. Figure 8 shows the 
calculated DoS in the conduction band of a trigate transistor 
with a cross section of 40nm × 60nm and the corresponding 
measurement of drain current at different temperatures and 
drain voltages [ 19]. 
 
 
 
 
 
 
 
 
 
 

Figure 8: DoS in the conduction band of a trigate transistor and 
measurement of ID(VG) at different temperatures and drain voltage 
values. 

 

IV. TRANSITIONS 
Confinement effects give rise to two interesting “transition” 
effects. The first one occurs if small potential barriers are 
created along the channel of a nanowire FET. These small 
barriers can arise from diameter variations (constrictions or 
simply line edge roughness) or localized surface or oxide 
charges. These barriers can isolate a portion of the channel 
(0D confinement) and transform the nanowire FET into a 
single-electron transistor (SET). The FET/SET transition is 
temperature dependent and has recently been observed at 
room temperature [20,21]. 

  
Figure 9: Nanowire FET with constrictions (left) and electron 
isoconcentration contours showing the formation of a quantum dot 
in the channel. 

 

The energy bandgap of semiconductor nanowires increases 
as the semiconductor diameter is decreased due to adding 
confinement energy to “bulk” energy levels [ 22 ]. This 
property is also applicable to semimetals which can 
transform into semiconductors when in a nanowire form. 
Bismuth nanowires, for example, show a semimetal behavior 
for diameters above 100nm and a semiconductor behavior 
for smaller diameters (Fig 10) [ 23 ]. Schottky junction 

behavior has been observed in bismuth step nanowires 
(diameter is varied in a step-like manner), indicating the 
larger part of the nanowire is metallic and the thinner part is 
a semiconductor [24]. 

 

 
Figure 10: Resistance vs. temperature in Bismuth nanowires with 
different diameters [23]. 

Tin is a semiconductor with zero-energy (or slightly negative) 
bandgap.  Ab-initio DFT simulations carried out on a GAA 
tin nanowire transistor with variable diameter (Figure 11) 
reveal that source and drain are metallic and the channel is 
semiconducting. In such a device there is no need for doping. 
Well- behaved transistor characteristics are obtained, with a 
subthreshold slope of 72 mV/dec and an IDsat of 3000 μA/μm 
at VG=0.44V and VD=0.25V (Figure 12) [25]. 

 
Figure 11: Tin (Sn) GAA nanowire transistor. L=2.3nm, Ø = 1 nm. 

 

I. CONCLUSION 
The multigate transistor structure achieves improved control 
of short-channel effects. The formation of subbands due to 
quantum confinement results in observable modifications of 
the electrical characteristics of MOSFETs. Metal-to-
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semiconductor and FET to SET transitions can be observed 
using certain materials and using variations of nanowire 
diameter. 

 

 
Figure 12: Output characteristics of a Tin nanowire FET. 
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