
P17

978-1-4799-5288-5/14/$31.00 c⃝ 2014 IEEE 217

Template-Based Mesh Generation
for Semiconductor Devices

Florian Rudolf∗, Josef Weinbub∗, Karl Rupp∗†, Andreas Morhammer∗‡, and Siegfried Selberherr∗
∗ Institute for Microelectronics, TU Wien, Vienna, Austria

† Institute for Analysis and Scientific Computing, TU Wien, Vienna, Austria
‡Christian Doppler Laboratory for Reliability Issues in Microelectronics at the Institute for Microelectronics

{rudolf|weinbub|rupp|morhammer|selberherr}@iue.tuwien.ac.at

Abstract—Creating multiple meshes of a semiconductor device
by varying specific geometric properties, like the gate length
of a MOSFET, is a crucial step for optimization or scaling
processes of these devices. A geometry generation technique for
semiconductor devices using geometry templates is presented
and implemented in the open source meshing tool ViennaMesh,
providing a convenient mechanism for creating device geometries
based on a selected set of parameters. These geometries can
be used by ViennaMesh to create high-quality meshes to be
exported and used by simulation tools. Results of meshes for two-
dimensional MOSFET and three-dimensional FinFET devices
created by this technique are presented.

I. INTRODUCTION

Device optimization and device scaling is an important
topic for technology computer aided design (TCAD) of semi-
conductor devices [1], [2], for which techniques like the finite
element method or the finite volume method are used to simu-
late physical properties in order to predict a device’s behavior.
Most of these simulation processes require a discretization
of the geometry of the device, which defines its shape and
size. The generation process of such a discretization, called
mesh, is a crucial step for these simulations [3], [4]. This
work focuses on the automatic creation of device geometries
required by mesh generation algorithms, but also covers the
mesh generation workflow required for device simulation.

In device optimization and device scaling processes often
just a few geometric parameters are of interest. For example,
the geometric parameters gate length, gate width, and oxide
thickness are of importance for MOSFET devices. Neverthe-
less, changing a specific geometric feature generally affects
other parts of the geometry. For example, changing the edge
length of a simple cube will affect the location of all 8
vertices. Thus, with classical geometry representations, like
boundary representations, all parts of the geometry influenced
by the geometric feature changes have to be recreated manually
according to these changes.

The concept of geometry templates has been applied to
closed source software, like COMSOL Multiphysics [5] or
Synopsys Sentaurus Structure Editor [6], but often limited to
the meshing algorithm provided, which decreases the flexibility
of the mesh generation process. Additionally, the geometry
templates usually support just one single scripting language,
thus only impeding re-use of already implemented geometric
algorithms. Also, a couple of open source meshing tools
are available, like Triangle [7], the Computational Geometry
Algorithms Library [8], [9], Tetgen [10], or Netgen [11]. The
supported types of input geometries for these meshing tools,
typically boundary representation geometries or constructive

solid geometries (CSGs), do not natively provide a workflow
for changing specific geometric features, like the gate length
of a MOSFET device, decreasing convenience and flexibility,
if certain features have to be changed repeatedly. Another
issue with available meshing tools is the incompatibility of
their geometry data formats. When using multiple meshing
tools, e.g., for mesh element quality optimization, the device
geometry has to be created for each tool and for each parameter
set separately.

II. TEMPLATE-BASED GEOMETRY KERNEL

We tackle these issues by providing a template-based
geometry kernel for our meshing framework ViennaMesh [12],
which is able to generate geometries based on a geometry
template and a set of input parameters. Similar to a CSG, a
geometry template is defined by a set of simple geometric enti-
ties, like rectangles or cubes, and a hierarchical tree of boolean
operations for combinations of these entities. In contrast to
classical CSG, the parameters of a geometric entity, like the
center of a cube, do not have to be specified explicitly, but
are also allowed to depend on other values. For this purpose,
support for scalar or vector input parameters as well as for
temporaries has been added, on which the parameters of the
geometric entities can depend. These dependencies as well as
the temporaries can be defined by arithmetic expressions using
the input parameters or other temporaries.

A schematic of a geometry template of a simple device
geometry, a pn-diode, is shown in Figure 1. A more practi-
cal example is given in Figure 2, where a two-dimensional
geometry template of a MOSFET device providing the gate
length as well as the oxide thickness as input parameters is
presented. Additionally, restrictions to input parameters can
be specified, which enable validation of the input parameter
values. The eXtensible Markup Language (XML) is used to
define a template, its geometric entities, boolean operations,
temporaries, and input parameters together with their optional
default values and optional restrictions.

The template-based geometry kernel includes a mechanism
which provides an interface to evaluate arithmetic expressions.
To increase the flexibility, the abstract design of the expression
evaluation mechanism enables multiple evaluation backends
for different expression or scripting languages, like the inter-
preters for the Python language [13] or the Lua language [14].
The expression evaluation mechanism is used by the template-
based geometry kernel to evaluate the arithmetic expressions
of the temporaries and the parameters of geometric entities to
create a resulting geometry in CSG representation.

218

p_length n_length

thickness p+ n-

p_length n_lengththickness
Input

parameters

center_p

 = (0, -p_length/2)

center_n

 = (0, n_length/2)
Temporaries

Geometric

entites

Rectangle p+

 center = center_p

 width = p_length

 height = thickness

Rectangle n+

 center = center_n

 width = n_length

 height = thickness

Fig. 1: A scheme of a two-dimensional geometry template of a
pn-diode. Three input parameters are provided: the length of the
n segment length n, the length of the p segment length p, and
the thickness. Two temporaries, the centers of the mesh segment
rectangles, are calculated based on these input parameters. Each mesh
segment is specified with a rectangle using the temporaries as centers
and the lengths and thickness as width and height, respectively.

gate length

body

gate

s
o
u
rc

e

d
ra

in

bulk

oxide

thickness

oxide

Fig. 2: A two-dimensional MOSFET device template, providing
the features gate length and the oxide thickness, as well as some
geometries for different input parameters.

One can distinguish between two types of TCAD software
tool users: end users, who utilize software tools and interprets
the software as a black box, and developers [15]. In our
approach it is possible to provide these ready-to-use device
templates to end users, whereas the templates are implemented
by developers. Accessing the input parameters is supported
using ViennaMesh’s application programming interface (API),
as command line parameters, or via its Python module. Addi-
tionally, the API can be used by a graphical user interface to
access the input parameters. Figure 3 shows the workflow of
the template-based geometry kernel with its input parameters
and the generated output geometry.

III. TEMPLATE CREATION AND MESHING WORKFLOW

The template-based geometry kernel is well integrated in
the ViennaMesh meshing framework and is therefore easily
combinable with other ViennaMesh algorithms. Particularly,

XML

Geometry

Template Geometry

Kernel

Input

Parameters

Arithmetic

Expresstions
Temporaries

Geometry

End UserDeveloper

Expression

Evaluation

Mechanism

Interpreter

Fig. 3: The workflow of the template-based geometry kernel with its
input parameters and the output geometry is shown. The expression
evaluation mechanism utilizes an interpreter backend to evaluate the
expressions defined in the input geometry template using a set of
input parameters by the end user. The geometry template itself is
created by a developer, while the end user sets the input parameters
to create a meshable geometry.

Geometry

Kernel

Meshing

KernelGeometry

Mesh

API

ApplicationPythonXML

Geometry

Template
Geometric

Parameters

Meshing

Parameters

Mesh
Geometry

Template

Template to Mesh Work ow

Mesh

Fig. 4: The internal workflow of ViennaMesh’s template-based mesh-
ing process is presented. A geometry template together with parameter
values is used to create a geometry which is further processed by a
meshing kernel to generate a mesh.

geometries created by this kernel can further be used by
the ViennaMesh meshing algorithms to generate a mesh.
To ensure good simulation results in critical device regions,
such as the channel of a MOSFET, a mechanism to control
the local element sizes is necessary. ViennaMesh’s element
sizing framework [16] provides geometry-independent control
of local mesh element sizes, which is especially important
when working with similar but slightly different geometries.
Figure 4 gives an overview of the workflow with the template-
based geometry kernel. Using this workflow, an end user is able
to conveniently obtain meshes by loading a geometry template,
optionally setting desired input parameters, and triggering the
meshing process via, e.g., the ViennaMesh Python module.
Exporting the resulting mesh to, e.g., a VTK file, finally
permits its use by other simulation or visualization tools.

219

MOSFET, 18nm gate length MOSFET, 30nm gate length MOSFET, 45nm gate length

5.0 · 1018 cm-3

1.0 · 1016 cm-3

1.0 · 1018 cm-3

1.0 · 1017 cm-3

MOSFET, 90nm gate length

Fig. 5: Electron concentration in two-dimensional MOSFET devices with 18nm, 30nm, 45nm, and 90nm gate length.

IV. EXAMPLES

ViennaMesh’s template mechanism has been applied to a
constant-field scaling process for two-dimensional MOSFET
and three-dimensional FinFET devices. Geometry templates
for the required devices have been created, providing the gate
length and the oxide thickness as input parameters. The three-
dimensional FinFET device template additionally provides the
gate width as an input parameter. These templates were used
by the template-based geometry kernel to create geometries for
different input parameter sets. The geometries were meshed
utilizing ViennaMesh’s element sizing framework to achieve
desired local mesh element sizes, especially important for the

channel regions. This is illustrated in simple drift-diffusion
simulations using the finite volume method as presented in
Figure 5 and Figure 6 for two-dimensional MOSFET devices
and for three-dimensional FinFet devices, respectively. Devices
with gate lengths of 18nm, 30nm, 45nm, and 90nm were
simulated.

V. SUMMARY

We presented the template-based geometry kernel of
the open source library ViennaMesh, its mechanism to
create meshes from an XML description of a param-
eterized family of similar geometries and its conve-
nient scripting interfaces, e.g., for the Python language.

220

FinFET, 18nm gate length FinFET, 30nm gate length

5.0 · 1018 cm-3

1.0 · 1016 cm-3

1.0 · 1018 cm-3

1.0 · 1017 cm-3

FinFET, 45nm gate length FinFET, 90nm gate length

Fig. 6: Electron concentration in sliced three-dimensional FinFET devices with 18nm, 30nm, 45nm, and 90nm gate length.

This approach simplifies automatic processes where specific
geometric features of the device geometry are changed repeat-
edly, for example, optimization or scaling processes. Results of
a drift-diffusion simulation of two-dimensional MOSFET and
three-dimensional FinFET devices with different gate lengths
were presented.

VI. ACKNOWLEDGEMENTS

This work has been supported by the European Research
Council, grant #247056 MOSILSPIN and by the Austrian
Science Fund FWF, grants P23296 and P23598.

REFERENCES

[1] International Technology Roadmap for Semiconductors,
http://public.itrs.net/

[2] S. Barraud et al., Scaling of Trigate Junctionless Nanowire MOSFET
With Gate Length Down to 13 nm, IEEE Electron Device Letters, 2012

[3] S. Selberherr, Analysis and Simulation of Semiconductor Devices,
Springer-Verlag, Wien - New York, 1984.

[4] P. Fleischmann et al., Mesh Generation for Application in Technology
CAD, IEICE Transactions on Electronics, 1999

[5] COMSOL Multiphysics, http://www.comsol.com/
[6] Synopsys Sentaurus Structure Editor,

http://www.synopsys.com/Tools/TCAD/Pages/StructureEditor.aspx
[7] J. Shewchuk, Triangle: Engineering A 2D Quality Mesh Generator

and Delaunay Triangulator, Applied Computational Geometry Towards
Geometric Engineering, 1996

[8] Computational Geometry Algorithms Library, http://www.cgal.org/
[9] C. Jamin et al., CGALmesh: a Generic Framework for Delaunay Mesh

Generation, INRIA Research Report 8256, 2013
[10] Tetgen, http://tetgen.org/
[11] J. Schöberl, NETGEN - An Advancing Front 2D/3D-Mesh Generator

Based On Abstract Rules, Computing and Visualization in Science, 1997
[12] F. Rudolf et al., The Meshing Framework ViennaMesh for Finite Ele-

ment Applications, Journal of Computational and Applied Mathematics,
2014

[13] Python, https://www.python.org/
[14] Lua, https://www.lua.org/
[15] J. Weinbub, Frameworks for Micro- and Nanoelectronics Device

Simulation, Dissertation TU Wien, 2014
[16] F. Rudolf et al., Mesh Generation Using Dynamic Sizing Functions,

European Seminar on Computing, 2014

