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Abstract—We present a theoretical study on the temporal
current fluctuation in nanowire FET caused by the presence of
a single gate oxide trap through the Coulomb interaction. Our
calculations based on the scattering theoretical formulation of
the current noise showed that the presence of the trap level in
the gate insulator gives rise to the enhancement of the noise at a
specific gate voltage. The peak position of the noise is related to
the capacitive coupling strengths of the trap to the channel and
the gate electrode, suggesting that the current noise can be used
to measure such physical quantities.

I. INTRODUCTION

Recent rapid development of semiconductor technology has

been mainly achieved by the miniaturization of the silicon

MOSFET down to nanoscale. Such aggressive down-scaling,

however, has been causing various drawbacks such as the

leakage current and the variation of the threshold voltage due

to the non-uniformity of the discrete dopants. Moreover, it

has been argued recently that in the sub 22 nm process the

random telegraph noise (RTN) may influence more seriously

the device performance. The origin of RTN has been attributed

to the trapping and detrapping of the carriers by various lattice

vacancies in the gate oxide [1], [2], [3], [4]. Such trapping

and detrapping process cause the temporal fluctuation of the

current, degrading the device performance.

While the noise degrades the device performance in general,

it sometimes plays informative role in understanding the

microscopic properties of the system. One of the well known

such examples is the detection of the fractional charge through

the shot noise in the fractional quantum Hall system. It should

also be of importance to explore the fundamental aspect of the

current noise in nanoscale MOSFET. With such motivation,

the purpose of this paper is to clarify theoretically how the

presence of a single trap level in the gate oxide of nanowire

(NW) FET induces the temporal current noise through the

Coulomb interaction.

II. THEORETICAL METHOD

In this section we introduce the general theoretical frame-

work to estimate the current noise caused by the temporal

potential fluctuation. We consider a multi-terminal conductor,

where each αth terminal (lead) is single moded and is con-

nected to an electron reservoir specified by the Fermi distri-

bution function fα(E) with the Fermi energy µα. Electrons in

the scattering region are assumed to feel the time-fluctuating

potential δV (r, t) caused by the fluctuation of the charge

density in the conductor in addition to the static potential

V0 (r), so that the total potential is given by

V (r, t) = V0 (r) + δV (r, t) . (1)

In the absence of the time-fluctuating potential δV (r, t), the
current in the αth lead is simply evaluated as

I(0)α =
q

h

∫

dE

Nterm
∑

β

fβ (E) Tr[Aββ (α,E,E)], (2)

where Nterm is the number of terminals (leads),

Aββ (α,E,E) = 1βδαβ − s†αβ (E) sαβ (E) , (3)

with sαβ being the spin-resolved scattering matrix relating

the injection from the βth leads to the ejection to the αth
lead, Tr denoting the trace over spin space. The presence of

time-fluctuating potential δV (r, t) is, if it is small enough,

considered as causing the time-fluctuation of the current in

the linear order of the potential fluctuation as

δIα (t) =

∫

d3r
δI

(0)
α

δV (r)
δV (r, t) , (4)

where δI
(0)
α /δV (r) is the functional derivative of the current

I
(0)
α in Eq. (2) with respect to the potential distribution V (r).

We note that, if the potential fluctuation δV (r, t) is time-

averaged to zero (it is the case in our present problem), the

time-averaging of the full time-dependent current Iα(t) ≡

I
(0)
α + δIα (t) results in the current without the potential

fluctuation so that Iα(t) = I
(0)
α . Therefore we can replace

I
(0)
α in Eq. (4) by Iα(t).
As we mentioned above, the origin of the time-fluctuating

potential is the fluctuation of the charge distribution in the con-

ductor. Therefore it is expressed as δV (r, t) = qδφ (r, t) with
δφ (r, t) being the electrostatic potential fluctuation (q = −|e|
is the charge of an electron), where δφ (r, t) is related to the

carrier density fluctuation δn (r, t) by the Poisson’s equation

as

∇ε(r)∇δφ (r, t) = −qδn (r, t) , (5)

where ε(r) is the position dependent dielectric permittivity.

In order treat the temporal carrier density fluctuation system-

atically, we employ the second-quantization formalism. The
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electron density operator corresponding to electrons injected

from all the electrodes is given by

n̂inj (r, t) =
∑

α,β

∑

σ,σ′

∫

dEα

∫

dEβνασ,βσ′ (r, Eα, Eβ)

× â†ασ (Eα) âβσ′ (Eβ) e
−i(Eβ−Eα)t/~,

(6)

where we have introduced the function νασ,βσ′ (r, Eα, Eβ) =

(1/h)ψ∗

ασ(r, Eα)ψβσ′(r, Eβ)/
√

vα(Eα)vβ(Eβ) expressing

the on- and off-diagonal elements of the the local density

of states with ψασ(r, Eα) being the scattering state for an

spin-σ electron incident from the αth lead with energy Eα

and vα(Eα) the corresponding group velocity in the αth
(spin-degenerate) lead, â†ασ (âασ) is the second-quantized

operator to create (annihilate) an electron incident from the

αth lead. In this second-quantized representation, the electron
density fluctuation is also an operator, given as

δn̂inj (r, t) ≡ n̂inj (r, t)− 〈n̂inj (r, t)〉 , (7)

where 〈· · · 〉 denotes the nonequilibrium quantum statistical

expectation value in the occupation number space [5]. This

electron density fluctuation causes an electrostatic potential

fluctuation through the Poisson’s equation (5). However here

we note that now both sides in Eq. (5) are operators. In

response to the the electrostatic potential fluctuation δφ̂ (r, t),
there should arise an induced electron density fluctuation,

which can be written in general as

δn̂ind (r, t) = −

∫

d3r′Π(r, r′; t, t′) qδφ̂ (r′, t′) , (8)

where Π(r, r′; t, t′) is response function, and is an unknown

function at this stage. Equation (7) is Fourier transformed with

respect to time to obtain

δn̂inj (r, ω) = ~

∑

α,β,σ,σ′

∫

dEνασ,βσ′ (r, E,E + ~ω)

×
{

â†ασ (E) âβσ′ (E + ~ω)−
〈

â†ασ (E) âβσ′ (E + ~ω)
〉}

.
(9)

Electron density fluctuation Eq. (8) induced by the potential

fluctuation is also Fourier transformed as

δn̂ind (r, ω) = −

∫

d3r′Π̃ (r, r′;ω) qδφ̂ (r′, ω) . (10)

In our present study, we assume the zero frequency limit and

employ the linear response treatment for the response function

[6],

Π̃ (r, r′) = −
∑

α

∫

dE
δνα (r, E)

δV (r′)
f (E − µα) , (11)

where να(r, E) = ναα(r, E,E) is the partial density of states

for electrons incident from the αth lead. The electrostatic

potential fluctuation is then determined as the one induced

by the summation of these two electron density fluctuations

through the Poisson’s equation as

∇ε(r)∇δφ̂ (r, ω) = −q {δn̂inj (r, ω) + δn̂ind (r, ω)} . (12)

We note that the solution to this equation (i.e., δφ̂ (r, ω))
is required to evaluate δn̂ind (r, ω) in second term through

Eq. (10), meaning that Eq. (12) is a nonlinear (or self-

consistent) equation. Nevertheless, the formal solution to

Eq. (12) can be written as

δφ̂ (r, ω) = q

∫

d3r′g (r, r′) δn̂inj (r
′, ω) , (13)

where g (r, r′) is the Green’s function satisfying the equation
∫

d3r′
{

−δ (r − r
′
)∇′2

+ e2Π̃ (r, r′;ω)
}

g (r, r′)

= δ (r − r0) . (14)

Once the potential fluctuation is obtained by Eq. (13), the

current induced by the potential fluctuation is obtained by

using Eq. (4). However, since the potential fluctuation in

Eq. (13) is a second-quantized operator, the current in Eq. (4)

has to be generalized to the second-quantized expression.

First, the Fourier transformed current operator (without the

fluctuation current) is

Î(0)α (ω) = q

∫

dE
∑

γ,δ,σ,σ′

â†γσ (E)Aγσ,δσ′ (α,E,E + ~ω)

×âδσ′ (E + ~ω) ,
(15)

with Aγσ,δσ′ (α,E,E + ~ω) being the spin σ-σ′ element of

Aγδ (α,E,E + ~ω) = 1αδαγδαδ − s†αγ (E) sαδ (E + ~ω) .
(16)

The second-quantized operator corresponding to the current

caused by the potential fluctuation is given similarly to Eq. (4)

δÎα (ω) =

∫

d3r
δ
〈

Îα(ω)
〉

δV (r)
qδφ̂ (r, ω) , (17)

where we have introduced the full Fourier transformed current

operator Îα (ω) ≡ Î
(0)
α (ω) + δÎα (ω) and used the fact that

its nonequilibrium quantum statistical expectation value of is
〈

Îα (ω)
〉

=

〈

Î
(0)
α (ω)

〉

since
〈

δφ̂ (r, ω)
〉

= 0. The actual

current fluctuation operator needed to evaluate the temporal

current noise is

∆Îα (ω) = Îα (ω)−
〈

Îα (ω)
〉

= Î(0)α (ω) + δÎα (ω)−
〈

Î(0)α (ω)
〉

. (18)

By substituting Eqs. (13) and (15) into Eq. (17), we obtain

δÎα (ω) = q

∫

dE
∑

γ,δ,σ,σ′

Kγσ,δσ′ (α,E,E + ~ω)

×
{

â†γσ (E) âδσ′ (E + ~ω)−
〈

â†γ (E) âδ (E + ~ω)
〉}

, (19)

where

Kγσ,δσ′ (α,E,E + ~ω) = q~

∫

d3r
δ
〈

Îα

〉

δV (r)

∫

d3r′g (r, r′)

×νγσ,δσ′ (r, E,E + ~ω)
(20)
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is the current fluctuation kernel due to the potential fluctua-

tion. Therefore the operator for the full current fluctuation is

calculated by

∆Îα (ω) = q

∫

dE
∑

γ,δ,σ,σ′

× {Aγσ,δσ′ (α,E,E + ~ω) +Kγσ,δσ′ (α,E,E + ~ω)}

×
{

â†γσ (E) âδσ′ (E + ~ω)−
〈

â†γσ (E) âδσ′ (E + ~ω)
〉}

.
(21)

Following the same procedure as in Ref. [5], current-current

fluctuation spectrum Sαβ (ω) is introduced by the relation

1

2

[〈

∆Îα (ω)∆Îβ (ω
′
)

〉

+

〈

∆Îβ (ω
′
)∆Îα (ω)

〉]

= 2πSαβ (ω) δ (ω + ω′
) . (22)

By substituting Eq. (21) into this equation, we obtain

Sαβ (ω) =
e2

~

∫

dE
∑

γδ

Tr [Bγδ(E,E + ~ω)]

×Fγδ(E,E + ~ω), (23)

where Tr denotes the trace over spin space,

Fγδ(E,E + ~ω) = fγ (E) {1− fδ (E + ~ω)}

+fδ (E + ~ω) {1− fγ (E)} , (24)

and

Bγδ(E,E + ~ω) =
4

∑

i=1

Bγδ,i, (25)

Bγδ,1 = Aγδ (α,E,E + ~ω)Aδγ (β,E + ~ω,E) (26)

Bγδ,2 = Aγδ (α,E,E + ~ω)Kδγ (β,E + ~ω,E) (27)

Bγδ,3 = Kγδ (α,E,E + ~ω)Aδγ (β,E + ~ω,E) (28)

Bγδ,4 = Kγδ (α,E,E + ~ω)Kδγ (β,E + ~ω,E) . (29)

Equation (23) is a central equation in our numerical calcu-

lation. In the absence of the potential fluctuation induced

term (i.e., Eq. (20)), Eq. (23) is reduced to the conventional

(shot+thermal) noise expression in Ref. [5], [6], [7]. In our

actual calculations presented below, we evaluate the zero-

frequency limit of the noise Eq. (23) with taking into account

the contributions of only the conventional noise term (Eq. (26))

and Coulomb noise term (Eq. (29)).

III. NUMERICAL RESULTS

As a representative example, we consider GaAs NW-FETs

with a single trap level in the gate oxide as schematically

shown in Fig. 1. Here the NW is assumed to be single-moded,

and has been modeled by the one-dimensional tight-binding

lattice (within the finite-difference approximation scheme)

with the hopping energy thop = ~
2/2m∗a20, where m

∗ =

0.067m0 is the effective mass of an conduction band electron

(m0 is the free electron mass) and a0 = 1 nm is the finite-

difference lattice spacing. Room temperature 300 K is assumed

throughout this paper. A single trap level in the gate oxide

is assumed to be coupled electronically with the NW at its

Gate

Oxidetrap

Source Drain

Fig. 1. Schematic illustration of the GaAs NW-FET with a single oxide trap
located at the middle point of the gate along the current direction. Gate length
LG of 5 ∼ 9 nm is assumed in the calculation of electronic transport, while
the radius of nanowire rnw = 5 nm and the gate oxide thickness tox = 1

nm are used to calculate the gate capacitance. Source and drain regions are
assumed to be n-type to allow the downward band-shifting by 0.285 eV with
respect to the intrinsic channel region. In our calculations, applied gate positive
voltage is simply assumed to be equal to the downward shift of the potential
in the channel region to focus only on the noise characteristics.

gC

tC

CC C
S

G

D

Trap

Fig. 2. Schematic illustration of the capacitance network model used to
solve Eq. (14) numerically. Three effective capacitance values are estimated
assuming the cylindrical NW geometry as C = 9.11 aF, Cg = 0.203 aF, and
Ct = 2.34 aF.

middle position with the coupling energy tcoup = 0.01× thop.
Electrostatic Green’s function in Eq. (14) is also solved numer-

ically within the finite difference scheme with the help of the

phenomenological capacitance model illustrated in Fig. 2. In

Fig. 3 we show the ID-VG characteristics computed by using

Eq. (2). In the calculated result we can see that the typical

ID-VG characteristics of MOSFETs is obtained even in the

presence of the trap in the gate oxide.

Next we consider the current noise calculated by using

Eq. (23) in the presence of potential fluctuation due to the

oxide trap. In Fig. 4 we plotted the Coulomb noise and

conventional noise (shot noise plus thermal noise) separately

as a function of the gate voltage. Here we see that the Coulomb

noise exhibits a sharp peak and exceeds the conventional noise

at around a specific gate voltage. Moreover our calculations

show that the shorter LG gives bigger noise at the peak

position, meaning the significance of the Coulomb noise in the

further miniaturization. In order to clarify the physical origin

which determines the peak position, in Fig. 5 we show the

gate voltage dependence of the intra-trap electrostatic response

function Π(r, r) (Eq. (11)) at the oxide trap position together
with the corresponding electrostatic Green’s function g(r, r)
(Eq. (14)). By comparing Figs. 4 and 5, we can understand
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Fig. 3. ID-VG characteristics for LG = 5, 7, 9 nm in the absence and the
presence of the trap site. Fermi energy is positioned at 0.114 eV above the
conduction band bottom in the source electrodes, while the trap site energy
is assumed to be 0.171 eV above the band bottom in the electrodes at the
zero gate voltage. Drain voltage 0.057 V is assumed. Trap level is shifted
lower in energy simultaneously with the channel potential by increasing the
gate voltage.
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Fig. 4. Noise-VG characteristics for LG = 5, 7, 9 nm (with the same
conditions as in Fig. 3. Peak heights for three cases are indicated by arrows.
The inset is the magnified view around the noise peak in the main panel.

that the Coulomb noise exhibits a peak when the intra-trap

electrostatic response function (negatively valued as shown in

Fig. 5) matches the minus of the sum of Ct and Cg, which

are the trap-NW and trap-gate capacitances, respectively. The

electrostatic intra-trap Green’s function is enhanced around

such matching point, giving rise to the peak in the Coulomb

noise through Eq. (20). Such enhancement of noise is similarly

observed in resonant tunneling diode structures [8], [9].
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Fig. 5. Intra-trap electrostatic responsive function (black trace, left axis) and
the intra-trap electrostatic Green’s function (blue trace, right axis) are plotted
as a function of VG.

IV. CONCLUSION

We have presented a theoretical study on the temporal

current fluctuation in nanowire FET caused by the presence

of a single gate oxide trap through the Coulomb interac-

tion. By generalizing the conventional scattering theoretical

formulation of the current noise to include the potential

fluctuation noise, we have obtained the closed expression for

such Coulomb noise. Our calculations based on the derived

noise expression have shown that the presence of the trap

level gives rise to the enhancement of the noise at a specific

gate voltage. The peak position of the noise is related to the

capacitive coupling strengths of the trap to the channel and the

gate electrode, suggesting that the current noise can be used

to measure such physical quantities.
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