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Abstract—Particle-mesh coupling in ensemble Monte Carlo
simulations of semiconductor devices results in unphysical self-
forces when using unstructured meshes to describe the device
geometry. We develop a correction to the driving electric field
and show that self-forces can be virtually eliminated on a finite
element mesh at a small additional computational cost. The
developed methodology is included into a self-consistent 3D finite
element Monte Carlo device simulator. We simulate an isolated
particle and show the kinetic energy conservation down to a
magnitude of 10−10 meV. The methodology is applied to a 10.7
nm gate length FinFET simulation and we find that for a large
enough ensemble of particles, the impact of self-forces on the
final ID-VG is almost negligible.

I. INTRODUCTION

Monte Carlo (MC) methods have been widely used to
simulate carrier transport in semiconductor devices [1], [2],
[3]. As semiconductor devices are shrunk into deep nanoscale
dimensions in order to boost their performance, the carrier
transport becomes highly non-equilibrium requiring advanced
physically based simulation models. The self-consistent en-
semble MC is one of such methods, providing a detailed
insight into transport and an accurate prediction of current
characteristics of nanoscale transistors [4], [5].

Nanoscale non-planar multi-gate transistor architectures [6]
such as FinFETs are replacing conventional bulk transistors
during the scaling into nanometre dimensions [7], [8]. Their 3D
device geometry at nanoscale has unique shapes created by the
fabrication process [4] which leads to new serious challenges
for physically based device modelling. In order to precisely
describe such fluctuating device geometry, the finite element
method (FEM) provides unparalleled advantages. However,
the use of unstructured meshes in a self-consistent ensemble
Monte Carlo (MC) [2] simulation requires careful evaluation
of the particle-mesh coupling to avoid unphysical self-forces
on the particles [9], [1], [10].

The impact of self-forces in semiconductor device particle
simulations has been extensively studied in the past [1], [10],
[3] and various methods have been proposed to minimise them.
However, most of these works have achieved a satisfactory
result only for orthogonal meshes [10]. In this work, we
present a methodology to evaluate and suppress the self-
forces in a finite element (FE) MC device simulator based
on tetrahedral elements [5]. The structure of the paper is as
follows. Section II describes the main features of the EMC
simulator used in the study and the methodology we have
developed for the determination of the self-force. Section III

presents and analyses two simulation studies. The first one
focuses on the impact of the self-force on a single particle,
and in the second one we show the impact of the self-forces
on the drain current of a 10.7 nm gate length SOI FinFET.
Finally, Section IV summarises the main conclusions of this
work.

II. METHODOLOGY

A. Monte Carlo simulations

The 3D FE ensemble MC simulation method that we
employ [5] uses an analytic non-parabolic anisotropic model
for the dispersion relation in the valleys of the conduction band
of silicon [2], [11]. The scattering mechanisms included in the
simulations are acoustic phonon scattering, non-polar optical
phonon scattering (g, f -processes) [2], [12], [13], ionized
impurity scattering using the third body exclusion model
by Ridley [14], [15] and interface roughness (IR) scattering
using Ando’s model as described in [16]. For an exponential
autocorrelation function, the IR scattering rate is given by
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where ∆RMS is the RMS height of the fluctuation at the
interface, Λ is the correlation length for the fluctuations, E⊥ is
the local transverse field (i.e. the one normal to the interface),
E is the complete elliptic integral of the first kind and all
other symbols have their usual meaning. The values used for
∆RMS and Λ are 0.57 nm and 1.7 nm, respectively. The
value for ∆RMS was taken from experimental data in Si
FinFETs [17] and verified in the simulation of a 25 nm gate
length FinFET [5], whereas the correlation length Λ is assumed
to be as in planar MOSFETs [18], [19]. Quantum corrections
are included through the density gradient approach [20] and
they are assumed to be fixed during the MC simulation [21].

B. Self-force correction

For the calculation of the self-force on the unstructured
mesh, we need the potential created by a point charge in every
node of the mesh. Therefore, for a given mesh and for every
node, we calculate the reference electrostatic potential for a
unit charge assigned to the node p, ψp,R :

∇2ψp,R = δ(~r − ~rp), (2)

ψp,R|∂ΩD
=

kC
|~r − ~rp|

, (3)
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where ∂ΩD is the external boundary of the domain, with
Dirichlet boundary conditions applied. This reference potential
mimics the potential that the particle would create in an infinite
domain without any other charge and with the boundary
condition lim|~r−~rp|→∞ ψp,R = 0.

To calculate the reference potential, we use the Ritz–
Galerkin approximation and apply the FEM based on tetra-
hedral elements with piecewise linear base functions θi [22].
We then obtain the following weak formulation of the equa-
tion (2) [23]:

K∑
j=1

ψp,R
j

∫
Ω

∇θj · ∇θidΩ = −δip, ∀i = 1, . . . ,K, (4)

where K is the number of nodes in the mesh and we have
used the fact that p is in the position of a node.

On the other hand, during the simulation, we solve the
Poisson equation to obtain the electrostatic potential at every
time step:

∇(ε(~r)∇ψ(~r)) =
∑
p

qpδ(~r − ~rp) + ρ(~r), (5)

where ε(~r) is the permittivity of the medium and ρ(~r) is a
continuous charge distribution. Using the same discretisation
method, we obtain the following weak formulation of the
equation:

ε
K∑
j=1

ψj

∫
Ω

∇θj · ∇θidΩ =

−
∑
p

qpθi(~rp)−
K∑
j=1

∫
Ω

ρjθjθidΩ, ∀i = 1, . . . ,K.

(6)

For every particle, we correct this electrostatic potential us-
ing the reference electrostatic potential (4) since it corresponds
to the self-interaction term. For a particle p in element e with
nodes i, we calculate the force as:

~F (~rp) = −qp
∑
i∈e

(
ψi − ε(~rp)ψi,R

i

)
∇θi(~rp). (7)

III. NUMERICAL RESULTS

To test the proposed method, we carry out two types of
simulations. First, we simulate a domain with a single charged
particle with Dirichlet boundary conditions representing the
Coulomb potential of the particle. Any force that the particle
feels in these conditions is artificial and corresponds with the
self-force. In this way, we can quantify the self-force in a given
mesh and also evaluate its impact in terms of conservation of
the energy. Later, we evaluate the impact of the self-force on
the current-voltage characteristics of a semiconductor device,
since this is the final quantity of interest and, therefore, the key
indicator about the quality of the method in terms of reliability
of the results.
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Fig. 1. Dependence of the kinetic energy with the simulation time for different
mesh scalings. A detailed view for small simulation times is shown in the inset
in a log-log scale.

A. Single particle simulations

To measure the self-force, we set up a simulation reproduc-
ing as closely as possible a single charged particle in an infinite
homogeneous domain. To approximate this ideal system, we
simulate self-consistently a single particle in an element e far
enough from the boundaries of the simulation domain. As a
first experiment, we simulate the evolution of a single particle
with zero initial kinetic energy. The movement of the particle is
carried out using the semiclassical equations of motion without
any scattering mechanism. Any force that the particle feels in
these conditions is artificial and corresponds to the self-force.
We evaluate its impact in terms of conservation of the energy.
We also study the impact of the mesh size using the same mesh
scaled by a factor up to 16 times larger than the original one.
Fig. 1 shows the time evolution of the kinetic energy during 1
ps for the differently scaled meshes. There is a clear artificial
increase of the kinetic energy caused only by particle-mesh
coupling. The increase in the energy of the particle decreases
with increasing size of the mesh. The inset shows the evolution
of the kinetic energy during the first 20 fs. For a free flight time
of 0.5 fs, the artificial kinetic energy increase can be as large
as 3 meV for the smallest element size, which is unacceptable
during a simulation.

Applying the correction for the self-force described in (7)
for every time step, we can suppress the self-force during
the simulation. Fig. 2 shows that the artificial kinetic energy
has been greatly reduced after applying the correction and it
remains below 2 × 10−13 eV after a simulation of 1 ps for
the worst case. For all the cases, the error in kinetic energy
remains zero for free flights of at least 30 fs in the worst case
and, for a scaling of the original mesh by a factor 4 or 8, it
remains zero for the whole simulation time.

B. Device simulations

We apply the self-force correction within our 3D FE MC
simulation toolbox including density gradient based quantum
corrections [5] to study the impact of self-forces in a 10.7 nm
gate length SOI FinFET designed following the ITRS 2012
description [24]. The device has a silicon body with a height
of 15 nm, a width of 5.8 nm, and an equivalent oxide
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Fig. 2. Dependence of the kinetic energy with the simulation time for different
mesh scalings using the corrected force calculation.

Fig. 3. Electrostatic potential inside the studied 10.7 nm gate length, n-
channel SOI FinFET at VD = 50 mV and VG = 0.9 V.

thickness (EOT) of the dielectric layer of 0.62 nm. The n-
type doping in the source and drain (S/D) regions has a
maximum concentration of 1020 cm−3 with a Gaussian decay
of δ = 3.45 nm, while the p-type channel is nominally undoped
to 1015 cm−3. All simulations are done at a low drain bias of
VD = 50 mV since self-forces will be more important at low
external fields. The electrostatic potential inside the device at
VD = 50 mV and VG = 0.9 V is shown in Fig. 3.

Fig. 4 shows the dependence of the drain current at VD =
50 mV and VG = 0.9 V with the number of superparticles with
and without self-force correction. For a large number of super-
particles, the self-force is smaller and negligible compared to
other fields (external and of other particles). However, as the
number of superparticles in the simulation domain increases,
the self-force starts being more important and the error in the
current increases to ∼ 10%. We can also see a decrease in
the current as we decrease the number of superparticles, as
also shown in Fig. 5 for the ID − VG characteristics at a low
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Fig. 4. Dependence of the drain current at VD = 50 mV and VG = 0.9 V
with the number of superparticles with and without self-force correction for
the studied 10.7 nm gate length SOI FinFET.
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Fig. 5. ID − VG characteristics of the 10.7 nm gate length SOI FinFET at
a low drain bias VD = 50 mV for different number of superparticles.

drain bias VD = 50 mV for different number of superpar-
ticles. As the number of superparticles decreases, the nature
of the long range electron-electron interaction changes from
quasi-continuum (many superparticles with a small charge)
to particle-like (few superparticles with an electron charge),
introducing an extra scattering.

IV. CONCLUSION

In this work, we have present a methodology which allows
the suppression of the self-forces in a FE MC device simulator
based on tetrahedral elements [5]. We found that self-forces
could have a very important impact on the kinetic energy of
an isolated particle without collisions. However, simulations
of a 10.7 nm gate length SOI FinFET demonstrated that when
we take into account external forces (from other charges and
external potentials) and scattering processes, the net impact of
the self-forces on the current of the device is quite limited
unless a small number of superparticles is used.

We have also studied the impact of the change in the
number of superparticles on the current. Due to the change
in the electron-electron interactions, if a small number of
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superparticles is used, the drive current can be significantly
underestimated. For example, the current drops by 50% when
reducing the number of superparticles from 100000 to 1000.
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