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Abstract—The momentum relaxation time (MRT) is widely
used to simplify low-field mobility calculations including aniso-
tropic scattering processes. Although not always fully justified, it
has been very practical in simulating transport in bulk and in
low-dimensional carrier gases alike. We review the assumptions
behind the MRT, quantify the error introduced by its usage for
low-dimensional carrier gases, and point out its weakness in
accounting for inter-subband interaction, occurring specifically
at low inversion densities.

I. INTRODUCTION

Semi-classical carrier transport at low driving fields is de-
scribed by the linearized Boltzmann equation (LBTE), which,
excluding inelastic scattering processes, reads

∑
n′,k′

Sn,n′(k,k′)
[

f 1
n (k)− f 1

n′(k
′)
]
=−F ·vn(k)

d f 0

dE
. (1)

The carrier distribution response f 1 can be expressed in terms
of a microscopic relaxation time tensor τ˜n(k) [1], which results
in an equivalent representation of Eq. (1),

∑
n′,k′

Sn,n′(k,k′)
[
τ˜n(k) ·vn(k)

−τ˜n′(k′) ·vn′(k′)
]
= vn(k).

(2)

The exact knowledge of τ˜n(k) would require a solution of
above integral equation, and two approximations can be intro-
duced to simplify the integral equation to a simple integration
in k-space.

The first approximation is to replace the tensor τ˜n(k) by
a scalar τn(k) and multiply Eq. (2) by vn(k), so it can be
rewritten as

∑
n′,k′

Sn,n′(k,k′)
[
τn(k)v2

n(k)

−τn′(k′)vn(k) ·vn′(k′)
]
= v2

n(k).
(3)

Factoring out v2
n(k) and τn(k), one obtains

1
τn(k)

= ∑
n′,k′

Sn,n′(k,k′)
[

1− τn′(k′)
τn(k)

vn(k) ·vn′(k′)
v2

n(k)

]
, (4)

which is the implicit definition [2] of the momentum relaxation
time (MRT).

The second approximation makes the assumption that
τn′(k′)/τn(k) ≈ 1, thus neglecting inter-subband coupling in

TABLE I. SYSTEMATIC OVERVIEW OF THE DIFFERENT EXPRESSIONS
FOR Θn,n′;k,k′ IN THE MOMENTUM RELAXATION TIME FORMULA; THE

NUMBERING SCHEME WAS CHOSEN TO BE CONSISTENT WITH [4].

direction quantity k vn(k)

normalized
2

1− k ·k′

kk′
5

1− vn(k) ·vn′(k′)
vn(k)vn′(k′)

non-normalized
3

1− k ·k′

k2
4

1− vn(k) ·vn′(k′)
v2

n(k)

the LBTE’s scattering operator and giving the explicit mo-
mentum relaxation time [1, 2],

1
τm

n (k)
= ∑

n′,k′
Sn,n′(k,k′)

[
1− vn(k) ·vn′(k′)

v2
n(k)

]
. (5)

Generally, one can write the MRT as an integral of the
transition rate Sn,n′(k,k′) multiplied by a weighting factor
Θn,n′;k,k′ ,

1
τm

n (k)
= ∑

n′,k′
Sn,n′(k,k′)Θn,n′;k,k′ . (6)

Other expressions for Θn,n′;k,k′ than the one derived in Eq. (5),

Θn,n′;k,k′ = 1− v(k) ·v(k′)
v2(k)

, (7)

can be found throughout literature. Reference [3] for instance
suggests

Θn,n′;k,k′ = 1− k′

k
cos(ϑk−ϑk′) = 1− k ·k′

k2 . (8)

A systematic overview is given in Table I. Here we distinguish
two classes of Θn,n′;k,k′ expressions: normalized (2 and 5)
and non-normalized (3 and 4). The value of the normalized
expressions is guaranteed to lie within 0≤Θn,n′;k,k′ ≤ 2, while
this is not the case for the non-normalized ones.

The usage of the non-normalized expressions for confined
systems can be problematic as they can result in negative mo-
mentum relaxation times. This unphysical behavior typically
affects Coulomb scattering, for which Sn,n′(k,k′) rapidly de-
creases with ‖k−k′‖. For n 6= n′, k and k′ may well be parallel
but have different length; especially, k′ might be larger than
k, in which case Θn,n′;k,k′ = 1− k ·k′/k2 becomes negative.
Combined with the aforementioned property of the function
Sn,n′(k,k′), this renders the non-normalized expressions for
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Fig. 1. Assume a valley centered around k = 0; a transition from initial
state ki to the final one kf would be weighted with a 1− cosϑ = 1 to obtain
the momentum relaxation time. If we choose a different reference point in
k-space, effectively shifting the valley to a position other than k = 0, the
momentum relaxation time factor changes dramatically. Physically, however,
mobility should not depend in the reference k-point.

Θn,n′;k,k′ extremely sensitive to the accuracy of the numerical
quadrature used to compute Eq. (5).

The usability of expressions 2 and 3 in Table I, which are
based on initial and final wave vectors rather than group veloci-
ties, are also questionable. Let us consider band structures with
multiple degenerate valleys, which is typical of conduction
bands of indirect semiconductors, where one example would
be the two-band k·p model for electrons in Si. Here, two
valleys lie on either side of the X-point and the choice of
the reference k-point greatly influences the resulting MRT, as
Fig. 1 illustrates.

Ruling out non-normalized and k-based expressions for
Θn,n′;k,k′ leaves only

Θn,n′;k,k′ = 1− vn(k) ·vn′(k′)
vn(k)vn′(k′)

. (9)

This expression can also be derived from Eq. (4) assuming
τn′(k′)vn′(k′)/τn(k)vn(k) ≈ 1 rather than τn′(k′)/τn(k) ≈ 1,
but has not been used in any of the publications known to
us. Although it appears to be a reliable choice it still neglects
the anisotropy of the microscopic relaxation time as well as
inter-subband coupling.

II. NUMERICAL SOLUTION OF THE LBTE

To be able to assess the error introduced by using the MRT
we need a way to obtain macroscopic quantities without the
use of MRT. To this end we need to go back to the Boltzmann
transport equation, Eq. (1). This time we will not introduce
a relaxation at all but rather solve for the carrier distribution
response f 1 directly.

It should be noted that Eq. (1) is linear in both carrier
response f 1 and driving field F. This allows us to factor out
the driving field modulus, leaving the reduced LBTE

∑
n′,k′

Sn,n′(k,k′)
[

f̃ 1
n (k)− f̃ 1

n′(k
′)
]
=−eF ·vn(k)

d f 0

dE
, (10)

where eF is a unit vector pointing in the direction of the driving
field and f̃ 1 = f 1/F is the reduced distribution response.

Before Eq. (10) can be solved it needs to be discretized.
This can be done using the same k-space grid that is employed

kx

ky

i j

lk

ε

i′ j′

l′k′

ε ′

Fig. 2. Energy contours that pass trough k-grid elements ε and ε ′ couple
the elements’ vertices, i, j, k, l, i′, j′, k′, and l′.

to obtain the subband structure in the first place, e.g. by
diagonalizing a k·p Hamiltonian. The k-grid imposes the
concept of discrete k-cells that are coupled by probability
fluxes due to scattering. The general form of the discretized
equation will thus be

∑
ν ′

Ŝν ,ν ′wν ,ν ′
[

f̃ 1
ν − f̃ 1

ν ′
]
=−eF ·vν

d f 0

dE
Vk, (11)

where ν = (n,k) is a global index that denotes the index of
each k-grid cell on in each subband and Vk is the volume, area,
or length of a k-grid cell depending on the dimensionality
of the carrier gas. The discrete states are coupled through
Ŝν ,ν ′wν ,ν ′ , where

Ŝν ,ν ′ =
2π

h̄
〈|Hn,n′;k,k′ |2〉 (12)

is the transition rate due to Fermi’s golden rule without the
energy-conserving δ (E−E ′) and wν ,ν ′ are weights that arise
from the discretization of the scattering operator.

To compute the coupling weights wν ,ν ′ we need to consider
the total probability flux from one cell ν to another ν ′.
When an equi-energy contour passes through two elements
on the k-grid it couples each element’s vertices, as shown in
Fig. 2. A numerical integration

∫
dE is performed, where the

contribution of each contour is accumulated

dwν ,ν ′ = gν(E)gν ′(E)dE, (13)

with gν(E) = 1/h̄‖vν‖ being the local density of states. Fig. 3
shows such an integration for a one-dimensional subband
structure.

Energy conservation in the scattering operator makes the
resulting wν ,ν ′ sparse. Ordering the discrete states by their
absolute energy will result in a dense skyline-type arrangement
of the non-zero elements in the matrix as shown in Fig. 4.
This is important since the number of non-zero elements in
a realistic device can easily reach tens of millions, and dense
storage has practically no memory overhead and results in fast
access times, since the elements don’t have to be searched for
in maps.

The sparsity of wν ,ν ′ also means that Ŝν ,ν ′ only needs to
be computed for the non-zero elements. This is crucial since
the computation of the transition rates in confined systems is
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Fig. 3. Calculation of the coupling weights for an elastic scattering operator;
wν ,ν ′ is obtained by integrating the product of the density of states of state
ν and ν ′ over the energy interval where ν and ν ′ overlap. Multiplied by a
transition rate it gives the probability flux between ν and ν ′.
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Fig. 4. The resulting non-zero pattern of the discretized scattering operator
for the example subband structure from Fig. 3; sorting all states by absolute
energy produces dense symmetric skyline matrix, thus eliminating storage
overhead.

by far the most time demanding task and the effort must be
kept to a minimum.

Having discretized Eq. (10) and computed the rates from
Eq. (10), we can now solve the system using a linear solver.
Due to system size, sparsity positive semi-definiteness, an
iterative solver can be used to efficiently calculate the f̃ 1

solution. The effort to obtain the solution from an assembled
matrix is negligible compared to the effort needed to calculate
the transition rates. This makes our approach computationally
competitive with MRT, since the rates need to be computed
regardless whether one uses the MRT or the f 1 approach.

III. RESULTS

We will now quantitatively compare the MRT approxima-
tion with the f 1 approach. To do so we will compute the
mobility of planar Si MOS channels and nanowires using
both approaches and compare the results. Both n and p-type
channels were investigated with the channel doping set to
NA = 3×1017 cm−3 for n-type and ND = 3×1017 cm−3 for
p-type channels. Different crystal orientations were used in
order to thoroughly test MRT against the f 1 approach. For
the MOS the substrate orientations {100}, {110}, {111}, and
{112} were used while keeping the transport direction at 〈110〉.

In the first step, the subband structure of the devices was

SCLPoisson Carrier model

k·p Schrödinger

ϕ

n, p

ρ

δϕ Vi j,m˜∗i jEn,k,ψn,k

orientation,
temperature

Strain
ε˜

Mobility

En,k,ψn,k

ScatteringScatteringScattering

En,k,ψn,k

Fig. 5. A self-consistent loop (SCL) is used to obtain potential and carrier
concentration. The subbands and wavefunctions from the converged results
are then used in the mobility model and the scattering models to compute
transition rates, probability fluxes, and finally the channel mobility.

TABLE II. SCATTERING MODEL PARAMETERS USED IN THE MOBILITY
CALCULATIONS

Parameter Value
Acoustic deformation potential (electrons) 14.6 eV
Acoustic deformation potential (holes) 10.2 eV
Roughness RMS amplitude 5 Å
Roughness autocorrelation length 10 Å

obtained using a self-consistently k·p-Schrödinger-Poisson
setup shown in Fig. 5. A two-band k·p Hamiltonian [5] was
used for modeling the conduction band and a six-band Hamil-
tonian [6, 7] including spin-orbit coupling for the valence band.

In the second step, the scattering operators were assembled
and transition rates computed as shown in the previous sec-
tion. The scattering processes involved were acoustic phonon
scattering, ionized-impurity scattering and surface-roughness
scattering [8, 9] with an exponential surface roughness au-
tocorrelation function. The parameters used in the scattering
models are summarized in Table II.

In the third and final step, f̃ 1 is either computed by solving
Eq. (11), or approximated using one of the MRT formulas.
Subband conductivity is obtained from

σn =−
q0

(2π)d

∫
Rd

vn(k) f̃ 1
n (k)d

dk, (14)

and from it the channel mobility.

All models involved in the calculations were implemented
as part of the Vienna Schrödinger-Poisson simulator [10, 11].

Fig. 6 shows the electron mobility curves of the n-type
MOS channels. The v(k)-based MRT models (4 and 5) ap-
proximate the f 1 solution very well at hight inversion densities
while they systematically underestimate electron mobility at
low densities. The k-based MRT models completely fail for
electrons due to the reasons discussed in Fig. 1.

In Fig. 7 the hole mobility for p-type channels is plotted.
Again, MRT 4 and 5 underestimate mobility at low inversion
densities while approximating the mobility curve well at high
densities, except for the {112} channel where the error persists
throughout the curve. Also, numerical instabilities can be
observed in the MRT 4 curve. k-based MRT models (2 and 3)
generally overestimate hole mobility. The accuracy of all four
MRT models is clearly orientation-dependent.
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Fig. 6. Electron mobility calculated using MRT (dashed: normalized, dotted:
non-normalized, blue: k-based, orange: v(k)-based) and solving f 1 (solid
green) for n-type MOS channels at different substrate orientations. Transport
direction if 〈110〉. MRT 4 and 5 deviate from f 1 at low inversion densities
but are a good approximation at high densities. MRT 2 overestimates mobility
by a factor of ten (not shown) while MRT 3 diverges.
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Fig. 7. Same as Fig. 6 for holes in p-type MOS channels; in general, k-based
MRT models (2 and 3) tend to overestimate hole mobility while v(k)-based
ones tend to underestimate it. Clearly, the discrepancy between the MRT and
f 1 solutions is orientation dependent.

Finally, Fig. 8 shows the hole distribution response f 1

in the top subband of the p-type {100} and {110} channels
approximated by MRT 5 and obtained by numerical solution
of Eq. (11). The numerical f 1 solution shows a redistribution
of carriers due to inter-subband coupling in the scattering
operator, an effect not seen in the MRT picture.

IV. CONCLUSION

We conclude that the MRT can give remarkably accurate
results regarding its simplifications, although one needs to
be careful about the choice of the weighting factor Θn,n′;k,k′ .
The normalized, group velocity-based expression in Eq. (9)
gives the most accurate and stable results. However, systematic
errors still occur in multi-subband systems and accuracy is
orientation-dependent. Simultaneously, we developed a com-
putationally efficient method to directly compute the carrier
distribution response and, from it, the exact channel mobility,

{100}

MRT 5

{100}

MRT 5

〈110〉

f 1-solutionf 1-solution

{110}

MRT 5

{110}

MRT 5

〈110〉

f 1-solutionf 1-solution

Fig. 8. k-space plots of the carrier distribution response for {100} and {110}-
oriented p-type MOS channels in inversion; the left pictures show the response
approximated by MRT 5, the right ones the f 1 response. The coupling between
subbands causes a redistribution of carriers not seen in the MRT picture.

thus avoiding the MRT and its problems while remaining
competitive in terms of computational effort.
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