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Abstract—The deterministic solution of the coupled Boltz-
mann transport equations for electrons and holes is calculated by
means of the spherical harmonics expansion method for avalanche
breakdown of a pn-junction. An iteration scheme based on a
splitting of the system matrix is presented, by which a stable
solution of this numerically challenging problem can be obtained.

I. INTRODUCTION

The deterministic solution of the Boltzmann transport
equation (BTE) by means of the spherical harmonics ex-
pansion (SHE) is a versatile alternative to the Monte Carlo
approach [1], [2]. Its application to avalanche breakdown of
a pn-junction is discussed in this work. As the avalanche
breakdown of a pn-junction is a bipolar phenomenon, it must
be simulated by a coupled transport model for electrons and
holes. A solution of the bipolar BTE with the SHE method for
electrons and holes has been shown in [3], which is extended
to the case of impact ionization (II), that generates secondary
charge carriers. The exponential dependence of the II genera-
tion rate on the applied bias and the avalanche effect sharply
degrade the stability and convergence of the problem and
require an appropriate iteration scheme for solving the bipolar
BTE together with the Poisson equation for the electrostatic
potential.

II. MODEL

The stationary carrier transport in the pn-junction is de-
scribed by BTEs for the distribution functions of electrons f¢
and holes f”. For electrons it reads

1= - -
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where the left-hand side terms of Eq. 1 describe the free
streaming of electrons and the right-hand side is composed
of the scattering term S {f¢} for electrons and the genera-
tion term @ { f¢, f"}, which couples the electron distribution
function f€ to the hole distribution function f”* [2]. The BTE
for holes is similar. If the generation terms ) { fe, fh} in
the BTEs for electrons and holes are neglected, the BTEs for
electrons and holes decouple. In this work @ { fe f h} must be
considered, because the crucial term, that causes the avalanche
breakdown of the pn-junction is the generation of secondary
pairs of carriers due to II from primary electrons and primary

978-1-4799-5288-5/14/$31.00 © 2014 IEEE 173

holes.
The energy dependent II scattering rate is modeled for elec-
trons by [4]
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These II scattering rates reproduce measured data for the
inverse ionization length and the quantum yield [5]. The
transition rates Sf}h(k:’ |k) for II must reproduce these II
scattering rates, when the integral

SEI(E) = / SEh(RR) K 4

is evaluated. These transition rates enter into the scattering
operator S {f°} due to II scattering of primary particles as
well as into the generation operator Q { f¢, f"} due to the II
generation of secondary particles. One primary particle with
sufficient energy can generate via II a secondary a pair of one
electron and one hole. For the sake of simplicity it is assumed
that the initial energy of the generated electron and hole is
zero and that each particle after the II scattering process has
the same energy, so that energy conservation requires
€—€

€rr = Tg ; ®)
with the initial energy of the primary particle e, the final energy
€77 of the three particles and the energy band gap ¢, [5].
The scattering terms S { f/*} include in addition to II phonon
scattering [2]. Full-band models for electrons and holes are
used, because the accurate description of the bands for energies
up to at least HeV is essential for the simulation of hot
carriers [6]. The bandstructure models described in [2], [7],
[8] satisfy this requirement and are used here. The SHE of the
BTE leads to a linear system with a sparse matrix, which is
solved with the iterative solver package ILUPACK [9].
II causes additional non-diagonal elements in the sparse matrix
of the BTE. These elements represent the II in-scattering



from high energy states into low energy states. According to
Eq. 2 and Eq. 3 these terms increase with increasing energy,
and therefore a small increase of the distribution function
at high energies can cause a dramatic increase of the in-
scattering due to II. A bias above the breakdown voltage
provides a sufficiently big distribution function at high energies
of electrons and holes to initialize this effect and hence the
avalanche breakdown occurs. This effect makes the system
unstable for biases near the breakdown voltage. Furthermore,
without II the sparse matrix is a scaled M-matrix for the lowest
order SHE and this property is lost, if II is included in the
BTE. This numerical disadvantage of the matrix can lead to a
wrong solution with partially negative distribution functions.
To improve the numerical robustness of matrix B(v)) of the
BTE for a given potential ) and to circumvent the instability
for biases near the breakdown voltage, the part of the discrete
BTE due to generation of secondary particles is split off.

BW)f = (BY@) + BYOW)) F=5w)  ©

In Eq. 6, B®(y) represents the BTE matrix with free-
streaming terms as well as the scattering of the primary
particles, whereas B(*)(1) covers the generation terms of
secondary pairs of particles. The matrix B(®) (1)) is charge
conserving, but it is no longer a scaled M-matrix for the lowest
order SHE. This separation circumvents the instability for
biases near the breakdown voltage, because the crucial terms
for the occurrence of an avalanche breakdown, the generation
of minority carriers by majority carriers, are split off into the
matrix B®)(¢)). After this separation the matrix B®) (¢)) itself
can not lead to a breakdown, because the generated secondary
particles are missed out. In contrast to the instable equation
B(¢)f = b(¢) of the complete system in the case of a bias
near the avalanche breakdown, the equation B® (1)) f = b(1))
can still be solved. To solve the complete system, an iteration
of the form

B () fu = b(®)) = B (@) far (M
is performed, where —B() (1) and b(1)) are non-negative.
In the step n of the iteration loop the split off in-scattering
terms are evaluated with the distribution function f,, 1 of the
previous iteration step n — 1 and enter into the right-hand
site of the equation. The new distribution function f, is then
determined by solving the linear equation with the remaining
matrix B(P)(¢)) without secondary carriers and the updated
right-hand side.
For the breakdown simulation, first a standard Gummel-type
iteration loop of just B® (y))f = b(y)) with the Poisson
equation (PE) is performed, that yields an initial solution for
the densities of both carriers and for the electrostatic potential,
which is used as a starting potential for the iteration scheme
in Eq. 7. For a bias below the breakdown voltage this loop
converges, because the charge generation by II during the
iteration is not sufficient to start the avalanche breakdown and
limited terminal currents are generated (Fig. 1). For a bias
above the breakdown voltage this loop does not converge and
the terminal currents increase exponentially (Fig. 1). Hence
in the case of a bias above the breakdown the iteration
loop (Eq. 7) does not converge without updating the matrices
B®) (") and B(*)(+") with respect to the changed potential
', since the change in potential lowers the number of hot
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Fig. 1. Terminal currents for different biases: 7.1V is below the breakdown

voltage, whereas 7.2V and 7.3V are above the breakdown voltage.
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Fig. 2.

carriers and thus II generation.

The convergence problem can be avoided by updating the
potential at every iteration of Eq. 7, but this is very CPU
intensive, because this requires to calculate the incomplete LU
decomposition for preconditioning anew. A faster algorithm
for treating the case of a bias above the breakdown voltage is
to perform the iteration (Eq. 7) for a fixed initial potential until
the resulting change in the potential would be above a certain
threshold between 1mV and 100mV, and to only rebuild the
matrices anew when this threshold is reached. This Gummel-
type iteration of BTE and PE with an update of the matrices
converges (Fig. 2).

III. SIMULATION RESULTS

In Fig. 3, the changes in the potential during the iteration
(Eq. 7) are shown with and without updating B(t)) and in the
beginning the changes in the potential are very similar. The
change in the potential first increases due to the charge built-
up in the junction and then decreases due to the reduction in
generation of secondary particles by II.
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Fig. 3. Maximum change in potential during the iteration process at 8.5V
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Fig. 4. Potential profile above the breakdown voltage

How the increase of the charges in the junction changes
the potential profile is visualized in Fig. 4. The correction in
the potential profile is larger for a higher bias. The increased
potential drop in the quasi-neutral regions due to the increased
current limits the increase of the potential drop in the space
charge region, where the particles gain the energy for II. Since
the II scattering rate depends on energy (Eqs. 2-3), this limits in
turn the increase in current. This self-stabilizing effect permits
to get a converged solution at breakdown.

Fig. 5 shows the densities of electrons and holes for two
bias points below the breakdown voltage and two above
the breakdown voltage. Fig. 6 shows the corresponding II
generation rates for secondary particles. The salient difference
in the densities and the generation rates for biases barely
below and above the breakdown voltage is illustrated in Fig. 5
and Fig. 6. Impact ionization generates carriers below the
breakdown voltage as well as above, but the value of the
generation rate is by orders of magnitude larger for a bias
above the breakdown voltage. For a bias below the breakdown
voltage the charge of these minorities compared to the charge
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Fig. 5. Densities for electrons (solid lines) and holes (dashed lines) at biases
close to the breakdown voltage
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Fig. 6. Generation rates due to impact ionization for electrons (solid lines)

and holes (dashed lines) at biases close to the breakdown voltage

of the majorities is not sufficient to have a notable influence
on the potential.
In Fig. 7 the energy distribution functions, that are the distribu-
tion functions multiplied by the density of states, of electrons
and holes are shown as functions of the energy at the maximum
position of the II generation rate and at the beginning and end
of the space charge region. The noticeable values of the energy
distribution functions at high energies in the II generation
region close to the junction clarify that the simulation of an
energy interval from OeV to at least 5eV should be considered.
The current voltage characteristic can be obtained by this
method (Fig. 8). The determination of the bias points close to
the breakdown voltage needs the most computational effort, as
the slopes in Fig. 1 and Fig. 3 for these bias points are small
and therefore many iterations are needed in the inner loop of
the iteration scheme (Fig. 2).
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Fig. 7. Energy distribution functions of electrons (solid line) and holes
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Fig. 8. Resulting current-voltage characteristic of the pn-junction

IV. CONCLUSION

We have presented the first simulations of the avalanche
breakdown in a pn-junction by solving the bipolar BTE with
the deterministic SHE approach. Compared to the Monte-Carlo
method the SHE approach has the advantage that a stationary
state is obtained directly, that the distribution functions are
available over many orders of magnitude as required by the
simulation of degradation, and that small-signal and noise
analyses are possible. The presented methods are not restricted
to pn-junctions and can also be used in the case of more
complex devices (e.g. power devices).
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