
P4

978-1-4799-5288-5/14/$31.00 c⃝ 2014 IEEE 165

Spatial Distribution of State Densities  
Dominating Strain Sensitivity of Carbon Nanotubes 

 

Masato Ohnishi 
Department of Nanomechanics, School of Engineering, 

Tohoku University, Sendai, Japan 
masato.ohnishi@rift.mech.tohoku.ac.jp 

Ken Suzuki, and Hideo Miura 
Fracture and Reliability Research Institute (FRRI),  

School of Engineering, Tohoku University, Sendai, Japan 
{kn, hmiura}@rift.mech.tohoku.ac.jp 

 
 

Abstract—In any electronic devices and sensors, internal 
strain is induced because of the thermal change or the lattice 
mismatch between different materials. It is, therefore, expected 
that when carbon nanotubes (CNTs) are used for electronic 
devices, their electronic properties are changed caused by the 
deformation. In this study, we study the mechanism of the 
change in the band gap of CNTs under the radial strain in 
terms of state density distribution. We found that the spatial 
distribution of the state density dominates its strain sensitivity, 
and thus, the strain sensitivity of electronic properties of CNTs. 
We also calculated the change in the current through the 
deformed CNTs. The founding indicates that the state density 
analysis should be useful for the development of novel 
electronic devices and nano electro mechanical systems and for 
assuring their reliable performance. 
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I. INTRODUCTION 
 In any electronic devices and sensors, internal strain is 
induced because of the thermal change or the lattice 
mismatch between different materials [1], [2]. It is, therefore, 
expected that when carbon nanotubes (CNTs) are used for 
electronic devices, their electronic properties are changed 
caused by the deformation. Theoretical [3]-[5] and 
experimental [6], [7] studies have revealed that both axial 
and radial strains change the band gap of CNTs.  

 It is known that the change in the band gap of CNTs 
under uniaxial strain [3], [4] can be described by the cutting-
line theory [8]. The geometrical structure of CNTs can be 
considered as a graphene sheet in which electrons have the 
same state when they move along the chiral vector, which 
corresponds to the vector along the circumference of CNT. 
The circumferential periodicity confines the movement of 
electrons and appears as cutting lines in the Brillouin zone of 
graphene in the reciprocal space. Because the band gap of 
CNT is determined by the distance of a Fermi point from a 
cutting line and a uniaxial strain shifts Fermi points from the 
cutting line relatively, the band gap of the CNT changes 
under a uniaxial strain. As for the radial strain, the change in 
the band gap of zigzag CNTs (ZNTs) and armchair CNTs 
(ANTs) has been studied [5], [9]-[12]. These studies have 
showed that ANTs, originally metallic, can be shifted to 
semiconducting while its symmetry breaks under a radial 

strain, while the band gap keeps its metallic characteristics 
when its symmetry remains [5]. ZNTs, (n,0) type CNTs, are 
originally metallic or semiconducting when n = 3p or 3p ± 1, 
where p is an integer, respectively. When a radial strain is 
applied to a ZNT, orbital hybridization is induced and then 
the band gap is changed. Compared to the mechanism of the 
band gap change based on cutting-line theory and the 
symmetry breaking, the effect of orbital hybridization is 
more complicated, and thus, incompatibility between 
experimental and theoretical studies still remain [11], [13].  

 In this study, in order to discuss the relationship between 
the deformation of CNTs and their electronic properties, 
first-principles calculation was performed. Firstly, in order to 
evaluate the change in electronic properties as the increase in 
strain and to relate geometrical and electronic structures, 
electronic structures of CNTs and are analyzed. We found 
that the change in electronic properties under radial strain 
can be evaluated by using a universal geometrical factor, 
dihedral angle [14]. Since the more complicated strain field 
like buckling deformation can be represented by dihedral 
angle, the effect of local strain field is expected to be 
evaluated with this factor. Furthermore, the mechanism of 
the change in the band gap of ZNTs under radial strain is 
analyzed in detail in terms of the spatial distribution of 
charge and state density. We electronic properties of CNTs 
under deformation is dominated by the change in dihedral 
angle. Finally, the change in current-voltage (I-V) 
characteristics of CNTs under radial strain is calculated by 
using nonequilibrium Green’s function (NEGF) method 
based on density functional theory (DFT). Our analysis 
clarifies how electronic states of CNTs are changed under 
strain in detail and gives guideline on how to assure the high 
performance of CNT(s)-based electronic devices. 

II. GEOMETRICAL AND ELECTRONIC STRUCTURES 
 Previous studies have revealed that electronic states of 
CNTs change significantly under axial, torsional [3], [4] and 
radial [5], [9] strains. Under axial and torsional strains, the 
change in bond lengths dominates the change in electronic 
states of CNTs. The change in the band gap under axial and 
torsional strains can be solved analytically if a strain is small 
[3], [4]. It has also been revealed that a radial strain causes 
orbital hybridization in a CNT which changes the band gap. 
In spite of these efforts, experimental and theoretical studies 
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are still not in agreement with each other. Moreover, fully 
flattened CNTs are found to be more stable than round CNTs 
recently [15], [16]. Since fully flattened CNTs have similar 
characteristics to GNRs, that is, they have a band gap, they 
are prominent candidates for a material of high performance 
devices. Therefore, understanding of the effect of radial 
strain is a critical issue to assure the stable and high 
performance of devices and also to develop high-
performance devices. In this section, focusing on radial strain 
which induces the change in orbital distribution, we analyzed 
electronic states of ZNTs under a multi-axial strain field to 
discuss the relationship between geometrical and electronic 
structures. 

 Analyses in this study are performed by using the 
density-functional theory (DFT) within the generalized 
gradient approximation (GGA) of Perdew-Burke-Ernzerhof 
(PBE) functional implemented in SIESTA package [17]. We 
use double-ζ plus polarization basis set, norm-conserving 
pseudopotentials, and a mesh dutoff of 210 Ry. At first, a 
radial strain was applied to the CNTs and then, a relaxation 
calculation was performed. During the relaxation calculation, 
the distance of the facing atoms, dll, was fixed at the initially 
applied value. Fixed atoms are colored by blue in an inset in 
Fig. 1. Strain value is defined as ε = |dll - D0|/D0, where D0 is 
the radius of the pristine CNT. The cube size along the tube 
axis was assumed to be 4.26 Å and the vacuum space at the 
radial direction was set large enough to neglect the effect of 
neighbor CNTs. The unit cell consisted of 4n carbon atoms. 

 The deformation is represented by the dihedral angle [14], 
an angle between π-orbitals of adjacent atoms as shown in an 
inset in Fig. 1. The direction of π-orbital of i-th atom, Vπ,i , is 
obtained by 

V�,i =
V31 � V21

|V31 � V21|, 

where Vkm = Vm – Vk and Vk (k = 1, 2, 3) is the k-th nearest 
neighbor atom of i-th atom. Dihedral angle, θd, can be 
obained by 

cos �d =
V�,i · V�,j

|V�,i · V�,j |. 
 DFT calculations are performed to evaluate the change in 
electronic structures of deformed CNTs. The total energy 
was converged to within 0.5 meV with a Monkhorst-Pack k-
point mesh of 1×1×50. Vacuum separations along x and y 
axes were more than 20 Å which was large enough to neglect 
the interaction of next cells. The length of a unit cell along z 
axis was assumed to be equal to the transverse vector of 
CNTs. 

 The change in the band gap of ZNTs under the radial 
strain is shown in Fig. 1. The maximum dihedral angle is 
taken as x-axis. This figure shows that although any CNTs, 
which originally have a different magnitude of the band gap, 
the band gaps of the CNTs starts to decrease at a certain 
range of the maximum dihedral angle, 25 to 30 degree. 
Moreover, the band gap decreases at the same rate, 
approximately 0.07 eV/degree, in every cases. This result 
shows that the dihedral angle is a universal parameter to  
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Fig. 1  Change in the relationship between the band gap and the maximum 
dihedral angle as the increase in radial strain. Insets show analysis model 
and dihedral angle θd. 

describe the change in the band gap of CNTs under radial 
strain. Since the dihedarl angel can be calculated from the 
positions of an atom and its three neighbors, and thus, it can 
be used to represent more complicated strain field such as 
buckling deformation, it is expected to predict the change in 
the band gap of buckling CNTs by using the dihedral angle. 

III. ANALYSIS OF SPATIAL DISTRIBUTION OF STATE 
DENSITIES 

 In the previous section, we revealed that when a radial 
strain is applied to a CNT, its band gap decreases at high 
curvature regions where the dihedral angle increases. The 
mechanism of the band gap change, however, has not been 
yet revealed. In this section, the mechanism of the change in 
the band gap is discussed in terms of the change in spatial 
distributions of state densities. 

 Changes in the electronic band structure of (13,0) CNT 
are shown in Fig. 2(a)-(c). Figure 2(a) shows the band 
structure of the CNT under strain-free condition. In this 
figure, the energy levels between the Fermi energy and the 
lowest singlet state in the conduction band, state E, are 
highlighted. All highlighted states except for E are doubly 
degenerate sates in the original state. In Fig. 2(b) and (c), 
changes in state D and state B are highlighted for simplicity. 
While both of state B and D are originally degenerate states, 
the change behavior of their energy under the radial strain is 
clearly different: State D is split into state D’ and state D” 
and the energy of state D’ decreases drastically as the 
increase in the strain. On the other hand, state B is not split 
and its energy did not decrease. The change in state energies 
at Γ point is summarized in Fig. 2(d). This figure shows that 
the reduction of state energies starts at the lowest singlet 
state in the conduction band, state E, and then, the reduction 
of state energy transmits to lower energy states. Eventually, 
the band gap starts to decrease when the lowest unoccupied 
molecular orbital (LUMO) energy, state A in this case, starts 
to change. It should be stressed that the behavior of the state 
energy B is clearly different with others and does not 
decrease. This result indicates that the strain sensitivity of 
sate energy is varied depending on its state. 

 The mechanism of the decrease in state energies and the 
difference of strain sensitivity among states can be well 
described by analyzing spatial distribution of state densities 
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Fig. 2  Change in electronic band structure (a-c) and state energies at Γ point 
(d) of (13,0) CNT under radial stain. Fermi energy is taken to be zero. (a) 
Dashed and continuous curves show singly and doubly degenerate states, 
respectively. (b, c) The states D (= D’ + D”) and B are highlighted for 
simplicity. (d) Red-colored state energies decreased as the increase in the 
strain while the energy of state B did not decrease. 
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Fig. 3.  Strain-dependence of the spatial distribution of state density at Γ 
point. Side views and their schematic image of the pristine CNT are shown 
on the first column, and cross-sectional views of the state density 
distribution of strained CNTs are shown on the other columns. Strain value 
is shown on the top of each panel. The cross-sectional views are represented 
by contour lines. The most outer line is 0.02 [e/(a.u.)3] and the contour 
interval is 0.02. The blue (red) lines indicate plus (negative) phase of the 
wave function. 

 

at Γ point. The change in state density distributions of state 
D’, strain-sensitive state, and state B, strain-insensitive state, 
are shown in Fig. 3. The figure clearly shows the difference 
between the spatial distribution of state D’ and state B: State 
density D’ and B expands along the axial direction and the 
circumferential direction at the original state, respectively, as 
shown on the first column in Fig. 3. State density D’ is 
localized at high-curvature regions when the redial strain is 
applied (see the case in ε = 0.20). Under larger strain, state 
density distributions move toward the center due to the 
interaction of opposing walls (ε = 0.50). On the other hand, 
spatial distribution of state density B does not change 
significantly even under large strain. The results show that 
the spatial distribution of the state density dominates its 
strain sensitivity, and thus, the strain sensitivity of electronic 
properties of CNTs. The founding indicates that the state 
density analysis should be useful for the development of 
novel electronic devices and nano electro mechanical 
systems (NEMS) and for assuring their reliable performance. 

IV. CHANGE IN I-V CHARACTERISTICS OF CNTS UNDER 
RADIAL STRAIN 

 Based on the above results, we can expect that by 
applying  a radial strain, the current value can be modified. 
This characteristics can be used various applications such as 
strain sensors, actuators, and nanoscale switches. Thus, in 
this section, the change in the current through CNTs under 
radial strain is analyzed. 

 Current-voltage (I-V) characteristics of (n,0) CNTs (n = 
10, 11, 13, 14) are analyzed by using nonequilibrium 
Green’s function (NEGF) method implemented in the 
TRANSIESTA code [18]. In this method, analysis model is 
divided three parts; device region and left and right 
electrodes. The Green’s function, GD, of device region is 
given by 

GD = [ESD �HD � (�1 + �2)], 

where HD and SD are Hamiltonian and overlap matrices of 
the device region, E is the energy of the incident electron to 
the device region, and Σ1 and Σ2 are the self-energy matrix of 
left and right electrodes, respectively, which represent the 
connection of each electrode with the device region. The 
transmission function from the right electrode to left 
electrode is obtained by 

T12(E, V ) = Tr[�1GD�2G
†
D]

�j = i[�j � �†
j ], (i, j = 1, 2)  . 

The current value under bias voltage from the right electrode 
to the left electrode is obtained from the transmission 
function. 

I(V ) =
2e

h

�
T12(E, V )[f2(E, V )� f1(E, V )]dE

, 

where f1, (2) is Fermi function of left (right) electrode, e and h 
are an elementary charge and Planck’s constant. 

 In this analysis, the same radial strain as Fig. 4 is applied 
to both device region and electrodes homogeneously. Such 
strain field should be introduced because of the deposition of 
metallic electrodes or an insulator layer. Device region 
contains seven unit cell. +0.5 V and -0.5 V bias voltage are 
applied to right and left electrode, respectively. The change 
in voltage in the device region is obtained self consistently in 
this analysis. To assure the accuracy of the analysis, a unit 
cell of each electrode is included in the device region during 
the calculation. 

 The change in transmission function of electron moving 
from right to left electrodes is shown in Fig. 4. This figure 
shows when 20% strain is applied, the transmission function 
increases at high energy region, more than 1.2 eV, while the 
transmission function of energy less than 1.2 eV does not 
change significantly. The increase in the transmission at high 
energy region corresponds to the decrease in the energy of 
unoccupied states as shown in Fig. 5. Further strain causes 
the increase in the transmission at whole energy region (ε = 
50%). The increase in the transmission at low energy 
corresponds to the decrease in the LUMO energy, which 
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Fig. 4.  Change in the transmission function of (13,0) CNT under 1.0 V bias. 
The average potential of both electrodes is assumed to be 0 eV. Electrons of 
energy from -0.5 eV to 0.5 eV mainly contribute to the current flow. Inset 
shows the analysis model. Unit bias voltage is applied to the device region 
consisting of seven unit cells. 
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Fig. 5.  Change in the current through CNTs under radial strain. Dihedral 
angle is used to summarize the results. 

occurs after the decrease in energies of higher levels. The 
change in current caused by the change in transmission is 
summarized at Fig. 5. This figure shows that the current 
value increase as the increase in the radial strain, and then, 
decreases drastically when the radial strain exceeds a certain 
value. These results show that the localization of state 
densities generates the path of electrons at high curvature 
regions and that the interaction of the upper and lower walls 
cause a drastic decrease in the current. The founding of this 
study indicates that the control of the strain field is required 
to assure the stable function of electronic devices, and, at the 
same time, we can develop both strain-sensitive and -
insensitive devices and sensors by using CNTs. 

V. CONCLUSION 
 In this study, we discussed the change in electronic 
structures of CNTs under radial stain in terms of the spatial 
distribution of state density. We revealed that when a radial 
strain is applied to CNTs, their state densities localize at high 
curvature regions. Because the localization of state density 
decreases its energy, when the LUMO energy decreases the 
band gap starts to decrease. Moreover, the analysis of I-V 
characteristics revealed that the current value increases as the 
localization of state densities. On the other hand, the 
interaction of walls causes the drastic decrease in the current. 
These analysis results indicate that CNTs have a various 
electronic features which can be used in electronic devices or 

sensors, such as strain sensors, nanoscale switches, and 
actuators. 
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