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Abstract

The numerical approach to quantum transport in
nanowires and nanotubes in the ballistic regime requires
an accurate numerical solution of the coupled Schrödinger
and Poisson equations. Here the feasibility of a 5th-order
method is proved for the longitudinal part of the wave
equation. The effectiveness of the method is demonstrated
on a ballistic device.

Introduction

In the full-quantum analysis of ballistic transport in
cylindrical-nanowire (CNW) and carbon-nanotube (CNT)
devices (a sketch of the former is shown in Fig. 1), the prob-
lem is often solved by decoupling the Schrödinger equation
along the radial (𝑟) and longitudinal (𝑧) coordinate [1].
After discretizing the latter from the source (𝑧 = 0) to the
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Fig. 1. A silicon, cylindrical nanowire (left, above); sketch of
the simulated device (right, below). The channel is 8 nm long,
both source and drain regions are 8.5 nm long.

drain (𝑧 = 𝑑) boundary, the Schrödinger equation is solved
over the transverse section at each grid node 𝑧𝑖. Being this
a closed-boundary problem, it yields a set of eigenvalues
that provide the ground energies of the subbands for the
longitudinal problem. The latter is then tackled by solving
the longitudinal Schrödinger equation with open bound-
ary conditions (“quantum-transmitting boundary method”,
QTBM), using the parabolic-band approximation. In this
part of the solution the total energy 𝐸 of the electron may
take any value within each subband. For the electrons that
are injected from the source (drain) into the channel the
weight of each 𝐸 is prescribed by the Fermi statistics 𝑓(𝐸)
and the density of states 𝑔(𝐸) of the source (drain) lead.

As the ground energies are obtained from the solution
of the Poisson equation, the problem entails the coupled
solution of the Schrödinger-Poisson system. The transversal
solution has two quantization indices (𝜇1 and 𝜇2) and is
quite expensive in itself. The longitudinal solution is less
expensive, but must be repeated for all pairs 𝜇1, 𝜇2, each
subband, and all values of 𝐸, that is, a huge number of
times. For this reason it is convenient to reduce the number
of grid nodes in the 𝑧 direction. This, however, lowers
the accuracy of the longitudinal solution and degrades the
calculation of the wave function 𝑤(𝑧, 𝐸) and transmission
coefficient 𝑇 (𝐸). For this reason, numerical schemes of an
accuracy higher than that of the standard Box-Integration-
Method (BIM) are useful in this context. An efficient
computational scheme, based on the Numerov Process (NP)
[2], is illustrated in this paper and tested on a model
problem; while its computational cost is the same as in
BIM, its error is of the sixth order in the grid spacing
𝜂 (specifically, the lowest-order term that is discarded is
proportional to 𝜂6).

Model

Following the reasoning outlined in the Introduction,
the analysis here is limited to the longitudinal part of the
problem. It is assumed that the solution of the lateral part,
including the influence of the bias applied to the device
gate, has preliminarily been obtained. As a consequence,
the model problem for the longitudinal coordinate 𝑧 is
made of the time-independent Schrödinger equation for a
particle of effective mass 𝑚, the Poisson equation, and the
integral relation for the electron concentration. The first two
equations read, respectively,

− ℏ
2

2𝑚
𝑤′′ − 𝑒𝜑𝑤 = 𝐸 𝑤 , (1)

with 𝜑 the electric potential and 𝑒 the elementary charge,

𝜑′′ =
𝑒

𝜀
(𝑛𝑆 + 𝑛𝐷 −𝑁) , (2)

with 𝑛𝑆(𝐷) the concentration of the electrons injected by
the source (drain), and 𝑁(𝑧) the dopant concentration, here
assumed of the donor type. The electron concentrations are
given by [1]

𝑛𝑆(𝐷)(𝑧) =

∫ ∞

𝐸𝑆(𝐷)

𝑔𝑆(𝐷) 𝑓𝑆(𝐷) ∣𝑤𝑆(𝐷)∣2 d𝐸 , (3)

where suffix 𝑆 (𝐷) again refers to the source (drain) and
𝐸𝑆(𝐷) indicates the bottom of the conduction band at
source (drain).
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The Numerov process provides a higher-order interpola-
tion among three consecutive grid nodes (see Appendix).
Despite the fact that the method was originally devised to
solve the Schrödinger equation, a difficulty must be men-
tioned, that could spoil its application to open integrations
like that of the present case: in fact, the first derivative
𝑤′ at the left or right boundary, also necessary to start the
open integration, must possess the same accuracy. However,
the difficulty can be overcome; the details are given in
[3], where boundary conditions having the same order of
accuracy as the interpolation scheme are worked out.
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Fig. 2. Number of iterations necessary to reach convergence
in the equilibrium condition. The legend indicates the number of
gridpoints for each simulation.

The boundary conditions for the Poisson equation do not
suffer the problem because the device is voltage driven:
as a consequence, this equation yields a boundary-value
problem. Moreover, the lack of the zeroth-order deriva-
tive in the Poisson equation provides a simpler form of
the Numerov interpolation; in conclusion, letting 𝑞(𝑧) =
2𝑚 [𝐸 + 𝑒𝜑(𝑧)]/ℏ2 and 𝛾 = 𝜂2/12, the discretized form
of (1) reads

𝑠𝑖+1 𝑤𝑖+1 + 𝑠𝑖−1 𝑤𝑖−1 = 2 (1− 5 𝛾 𝑞𝑖)𝑤𝑖 , (4)

where the suffix indicates the nodal value, and 𝑠𝑗 =
1+ 𝛾 𝑞𝑗 . Eq. (4) is solved by a forward substitution, given
𝑤0 = 𝑤𝑧=0 and 𝑤1; the latter value is extracted from the
boundary conditions 𝑤0, (d𝑤/d𝑧)𝑧=0 [3]. In turn, letting
𝑐 = 2𝑚𝑒2 (𝑛𝑆 + 𝑛𝐷 −𝑁)/(ℏ2 𝜀), the discretized form of
(2) reads

𝑞𝑖−1 − 2 𝑞𝑖 + 𝑞𝑖+1 = 𝛾 (𝑐𝑖−1 + 10 𝑐𝑖 + 𝑐𝑖+1) . (5)

The wave function 𝑤 in (1) is defined apart from a
multiplicative constant, whose value is determined as shown
in the following. One notes that the density of states in (3)
is one dimensional, namely, its units are (J cm)−1; as a
consequence, those of 𝑤 are cm−1. As shown below, 𝑤 in
the leads is proportional to a plane wave, so that its units are
embedded in the multiplicative constant mentioned above.
The value of the latter is obtained from a normalization
condition imposing that the device is globally neutral at

equilibrium. From the espression of charge density given
by the right hand side of (2), the normalization condition
is found to be∫ 𝑠

0

(𝑛𝑆 + 𝑛𝐷) d𝑧 =

∫ 𝑠

0

𝑁 d𝑧 , (6)

with 𝑛𝑆(𝐷)(𝑧) given by (3).

Fundamental Solutions

Considering the two leads connected to the source and
drain contacts, the potential energy 𝑉 (𝑧) = −𝑒𝜑 is
prescribed as 𝑉 = 𝑉𝑆 = const. for 𝑧 ≤ 0 and 𝑉 = 𝑉𝐷 =
const. for 0 < 𝑑 ≤ 𝑧. As 𝐸 > 𝑉𝑆 , 𝑉𝐷, the total energy is
not quantized and all values of 𝐸 larger than 𝑉𝑆 and 𝑉𝐷

are allowed. The solution of (1) in the left and right lead
is a combination of plane waves

𝑤𝑆 = 𝑎1 exp(𝑗 𝑘𝑆 𝑧) + 𝑎2 exp(−𝑗 𝑘𝑆 𝑧) , (7)

𝑤𝐷 = 𝑎5 exp(𝑗 𝑘𝐷 𝑧) + 𝑎6 exp(−𝑗 𝑘𝐷 𝑧) , (8)

𝑘𝑆(𝐷) =
1

ℏ

√
2𝑚 (𝐸 − 𝐸𝑆(𝐷) − 𝑉𝑆(𝐷)) , (9)

with 𝑎𝑖 undetermined coefficients. It is 𝑎6 = 0 (𝑎1 = 0)
when the particle is launched from the left (right). In the
interval 0 ≤ 𝑧 ≤ 𝑑 the general solution of (1) is

𝑤 = 𝑎3 𝑢(𝑧) + 𝑎4 𝑣(𝑧) , (10)

where 𝑢, 𝑣 are the two fundamental solutions of (1) in 0 ≤
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Fig. 3. Profile of the electric potential 𝜑 inside the device, at
equilibrium. The two vertical lines mark the ends of the channel.

𝑧 ≤ 𝑑, fulfilling the boundary conditions 𝑢(0) = 1, 𝑢′(0) =
0, 𝑣(0) = 0, 𝑣′(0) = 1. Expression (10) of 𝑤 is convenient
because it allows one to solve (1) for 𝑢 and 𝑣, using the
interpolation scheme (4), without considering the matching
relations at the boundaries. The relations among coefficients
are determined afterwards, using the fundamental solutions
thus obtained. For instance, for an injection from the source
the continuity of the wave function and its derivative at
𝑧 = 0 and 𝑧 = 𝑑 yields(

𝑎2
𝑎1

)
𝑆

= −𝑢′
𝑑 + 𝑗 𝑘𝑆 𝑣′𝑑 − 𝑗 𝑘𝐷 (𝑢𝑑 + 𝑗 𝑘𝑆 𝑣𝑑)

𝑢′
𝑑 − 𝑗 𝑘𝑆 𝑣′𝑑 − 𝑗 𝑘𝐷 (𝑢𝑑 − 𝑗 𝑘𝑆 𝑣𝑑)

. (11)
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In turn, the expression of 𝑤𝑆 to be used in (3) is

𝑤𝑆 = 𝑎1

[(
1 +

𝑎2
𝑎1

)
𝑆

𝑢+ 𝑗 𝑘𝑆

(
1− 𝑎2

𝑎1

)
𝑆

𝑣

]
, (12)

with 𝑎1 still arbitrary. The injection from the drain is treated
in a similar manner, to yield(

𝑎2
𝑎6

)
𝐷

= − 2 𝑗 𝑘𝐷 exp(−𝑗 𝑘𝐷 𝑑)

𝑢′
𝑑 − 𝑗 𝑘𝑆 𝑣′𝑑 − 𝑗 𝑘𝐷 (𝑢𝑑 − 𝑗 𝑘𝑆 𝑣𝑑)

, (13)

𝑤𝐷 = 𝑎6

(
𝑎2
𝑎6

)
𝐷

(𝑢𝑑 − 𝑗 𝑘𝑆 𝑣𝑑) , (14)

with 𝑎6 arbitrary. Finally, the normalization constant is
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Fig. 4. Profile of the charge density 𝜚 inside the device, at
equilibrium.

worked out by letting 𝑎6 = 𝑎1 and inserting (12,14) into
(3) and then into (6).

Results and Discussion

The figures refer to a 25 nm-long device whose channel
is lightly doped (𝑁 = 1014 cm−3) and has a length of 8
nm (Fig. 1). The source and drain regions are 8.5 nm long,
with a dopant concentration equal to 𝑁 = 1017 cm−3. The
lateral size is small enough to make the Fermi statistics
significant for the first subband only; the data for the one-
dimensional density of states of the latter, 𝑔 ∝ 𝐸−1/2, are
taken from [1]. The zero of the electric potential is made
to coincide with the bottom of the conduction band at the
left boundary; the bottom of the conduction band on the
right is set to 𝑉𝐷 = −𝑞 𝜑𝐷, where the applied bias 𝜑𝐷 is
made to range from 0 to 1 V. Charge neutrality is assumed
at the contacts.

The analysis has been carried out starting with a large
number of grid nodes (𝑀 = 3.200) and progressively
decreasing it to 𝑀 = 75. The tentative solution used to
start the iterative procedure was 𝜑′′ = 0 in all cases. The
convergence criterion has been set to

max𝑖∣𝜑new
𝑖 − 𝜑old

𝑖 ∣ ≤ 1 𝜇V , (15)

with 𝑖 the nodal index.
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Fig. 5. The same as in Fig. 2, with an applied bias 𝜑𝐷 = 1 V.

The number of iterations necessary to fulfill criterion (15)
in the equilibrium case (𝜑𝐷 = 0) is shown in Fig. 2, using
the number of nodes as parameter. The convergence rate
turns out to be about the same for 𝑀 ranging from 3.200
to 50, whereas it starts increasing when the number of grid
nodes becomes smaller than 50. The electric potential 𝜑
obtained from a self-consistent solution of (1), (2), and
(3), still in the equilibrium condition, is shown in Fig. 3,
with the vertical lines marking the channel ends. Although
the coarseness of the discretization is clearly visible in the
𝑀 = 25 case, the curves essentially overlap each other.
The charge density corresponding to the electric potential
of Fig. 3 is shown in Fig. 4; as this function is obtained
from (3), its calculation is the most delicate part of the
solution process. The sharp variations in the charge density
at the ends of the channel correspond to changes in the
slope of the curves of Fig. 3 at the same positions; such
changes are not easily seen due to the figure’s scale.

The number of iterations necessary to fulfill criterion (15)
at the largest applied voltage (𝜑𝐷 = 1 V) is shown in Fig.
5, still using the number of nodes as parameter. The number
of iterations is smaller than at equilibrium (compare with
Fig. 2); this is due to the fact that the charge density within
the device becomes smoother as the applied bias increases,
at least in the bias range considered here. The convergence
rate turns out to be about the same for 𝑀 ranging from
3.200 to 100; it starts increasing when the number of grid
nodes becomes smaller than 100, but remains significantly
below the equilibrium value.

The charge density corresponding to 𝜑𝐷 = 1 V is shown
in Fig. 6. The results show that the method exhibits the
same behavior down to 𝑀 = 100 at least, whereas some
spurious oscillations become apparent when the number
of grid nodes is lower (e.g., the curves corresponding
to 𝑀 = 50 and 𝑀 = 25). This is to be expected,
because the wave function in the source and drain regions
is of the oscillatory type (𝑤 ≃ exp(±𝑗 𝑘 𝑧)), so that the
discretization is effective if the period 𝑍 = 2𝜋/𝑘 of 𝑤
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fulfills the constraint 𝑍 ≫ 𝑑/𝑀 , equivalent to

𝐸 − 𝐸𝑆(𝐷) ≪ (2𝜋 ℏ)2

2𝑚𝑑2
𝑀2 , (16)

in the energy range where the Fermi statistics differs
significantly from zero (compare with the integral in (3)).
If one takes 𝑚 = 0.5 𝑚0, with 𝑚0 the free electron’s mass,
and uses 𝑑 = 25 nm, the fraction at the right hand side of
(16) is about 4.8 meV. The constraint (16) is not fulfilled
any more when 𝑀 becomes low.

Finally, Fig. 7 shows the charge density at different
biases, with 𝜑𝐷 ranging from 0 to 1 V, and 𝑀 = 3200.
As the bias departs from the equilibrium value, the charge
distribution undergoes a sudden variation due to the ballistic
regime. In conclusion, an effective application of a higher-
order solution method has been implemented and tested. It
has been applied to self-consistently solve the longitudinal
part of the coupled Schrödinger-Poisson system, typical of
ballistic devices; the problem is particularly severe because
it entails an open integration where the number of grid
nodes must be kept as low as possible to limit the numerical
burden of the transversal part of the equations.
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Fig. 6. The same as in Fig. 4, with an applied bias 𝜑𝐷 = 1 V.

Appendix

The Numerov Process is derived as follows. Consider
three consecutive, equally-spaced nodes of the grid, such
that 𝑧𝑖−1 < 𝑧𝑖 < 𝑧𝑖+1, and Taylor expand a function 𝑓
from the central node 𝑖 to the (𝑖+ 1)th one,

𝑓𝑖+1 = 𝑓𝑖 + 𝜂 𝑓 ′
𝑖 +

𝜂2

2
𝑓 ′′
𝑖 + . . . , (17)
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Fig. 7. Charge density 𝜚 at different biases, with 𝜑𝐷 ranging
from 0 to 1 V.

where the superscripts indicate derivatives and 𝜂 is the grid
spacing. A similar expansion from 𝑖 to 𝑖− 1 has the same
even powers as (17), whereas the odd powers have the
opposite sign. When the two expansions are summed up,
the odd powers cancel each other; if the result is truncated
by leaving out the sixth order, one finds

𝑓𝑖+1 + 𝑓𝑖−1 ≃ 2 𝑓𝑖 + 𝜂2 𝑓 ′′
𝑖 +

𝜂4

12
𝑓 ′′′′
𝑖 . (18)

As (18) holds for any function, it holds for 𝑓 ′′ as well. This
yields, again leaving out the sixth order,

𝑓 ′′
𝑖+1 + 𝑓 ′′

𝑖−1 ≃ 2 𝑓 ′′
𝑖 + 𝜂2 𝑓 ′′′′

𝑖 . (19)

Elimination of 𝑓 ′′′′
𝑖 between (18) and (19) provides a

relation of the form

𝑓𝑖+1 + 𝑓𝑖−1 ≃ 2 𝑓𝑖 +
𝜂2

12

(
𝑓 ′′
𝑖+1 + 𝑓 ′′

𝑖−1 + 10 𝑓 ′′
𝑖

)
. (20)

If 𝑓 is the solution of a second-order differential equation
like (1), one has 𝑓 = 𝑤, 𝑤′′ = −𝑞 𝑤. Replacing the second
derivative into (20) yields (4). If, instead, 𝑓 is the solution
of a second-order differential equation like 𝑞′′ = 𝑐, with
𝑐 a given function (compare with (2)), letting 𝑓 = 𝑞 and
replacing the second derivative in (20) yields (5).

The calculations leading to (20) imply that the grid is
uniform. This is not too severe a constraint for the problem
considered in this paper. On the other hand, if necessary,
a regional approach is also feasible, where the domain
is parted into subdomains such that the grid spacing is
uniform within each subdomain, but different from one
subdomain to another. The connection between two sub-
domains is achieved using the same method depicted in
[3], that preserves the accuracy of the numerical scheme.


