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Abstract—The hopping transport in organic semiconductors
produces characteristic frequency dependencies of the admittance
and noise, which are calculated in this paper for the first
time based on the master equation approach, where noise is
evaluated by the Langevin approach and a modified Ramo-
Shockley theorem. At low frequencies and low injection the non-
equilibrium noise is found to be shot noise in the framework of
this model.

I. INTRODUCTION

In recent years organic light emitting diodes (OLEDs)
have appeared in many applications and disordered organic
semiconductors are the basis of various devices (e.g. [1]).
Charge carrier transport in amorphous organic semiconductors
is due to hopping of electrons or holes from one molecular site
to another and can be described by a Pauli master equation [2].
The hopping rate depends on the total energy of the site,
which includes the site energy and potential energy due to the
quasi-static potential and image potential. The master equation
is solved self-consistently with the Poisson equation for the
quasi-static potential by the Newton-Raphson approach [3].
Here, we present for the first time small-signal and noise ana-
lyses, which are performed directly in the frequency domain.
This enables simulation of admittance spectroscopy, a powerful
tool to investigate transport in organic semiconductor devices.

II. MODEL

The transport model is the same as in Refs. [2], [3]. A 3D
tensor-product grid with a constant and isotropic spacing of a0
is assumed for the hopping sites, where the x direction is the
transport direction. The device is a simple unipolar 1D diode
with contacts at the left and right-hand sides of a homogeneous
semiconductor bulk with the permittivity ε. The length of the
diode is L and its cross section A. The master equation for
the 3D grid is

dpi
dt

+
∑
j

[
(1− pj) vjipi − (1− pi) vijpj

]
= 0 . (1)

pi is the occupancy of site i, of which the energies are
randomly distributed according to a Gaussian distribution, and
vij is the transition rate for hopping from site j to i, which
is given by the Miller-Abrahams expression [2]. Scattering is
possible within a sphere with a radius of

√
3a0. The model

and device parameters are the same as for Fig. 1(a) of Ref. [2]

and the boundary conditions of the master equation are taken
from Ref. [3], where the occupancy is fixed to 0.5 on the
contacts and periodic boundary conditions are used on the
other surfaces. The master equation is solved together with a
1D Poisson equation, in which the particle density is averaged
over the cross section perpendicular to the transport direction
and the potential is constant within a cross section.

In Ref. [4] it is shown that the Pauli master equation
violates current continuity, because the particles hop instan-
taneously from one site to the next. This corresponds to the
annihilation of a particle at site i and immediate creation at
site j, and the total current density ~J + ∂ ~D/∂t is no longer
divergenceless

div

(
~J +

∂ ~D

∂t

)
= q (1− pj) vjipi [δ (~r − ~rj)− δ (~r − ~ri)]

(2)
and the conduction current density ~J is zero. ~ri is the location
of the site i and q the particle charge. In order to evaluate
the terminal current with the Ramo-Shockley theorem [5],
which is based on a divergencelass total current density, it
has to be modified for hopping, which results in genera-
tion/recombination [6]. The current flowing into terminal l is
given by the integral over the terminal area ∂Dl

Il = −
∫
∂Dl

(
~J +

∂ ~D

∂t

)
· d ~A , (3)

where d ~A has an outwards orientation. With the fundamental
solution hl(~r) for terminal l of the Poisson equation for
zero space charge and a modified boundary condition for the
terminals hl(~r ∈ ∂Dk) = δl,k the integral can be extended to
the complete surface of the device ∂D

Il = −
∮
∂D

hl

(
~J +

∂ ~D

∂t

)
· d ~A , (4)

where it is assumed that Neumann-type boundary conditions
apply to all non-contact areas. With Gauss’ law we obtain an
integral over the volume of the device D [6]

Il =−
∫
D

div

[
hl

(
~J +

∂ ~D

∂t

)]
dV
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=−
∫
D

gradhl ·

(
~J +

∂ ~D

∂t

)
+ hldiv

(
~J +

∂ ~D

∂t

)
dV .(5)

In the last line the first term almost completely vanishes,
because the conduction current density is zero and the special
choice of the test function hl cancels the displacement current
due to the space charge and only the contribution due to the
electrostatic capacitance Clk remains [5]

Il =
∑
k

Clk
dVk
dt
−
∫
D

hldiv

(
~J +

∂ ~D

∂t

)
dV , (6)

where the sum runs over all terminals and Vk is the bias applied
to the terminal k. In the case of the diode the left terminal is
grounded and the bias V is applied between the right and left
terminals. The test function is given in this case by h(~r) = x/L
and the modified Ramo-Shockley theorem evaluates for the
right-hand side terminal to

I = C
dV

dt
+
∑
i,j

q (1− pj) vjipi
xi − xj
L

. (7)

xi is the x-coordinate of site i and C = εA/L.

Small-signal analysis is performed under the sinusoidal
steady-state condition for an angular frequency ω with a master
equation, which is linearized w.r.t. the stationary state (pi is
the DC occupancy)

jωp
i
+
∑
j

[
(1− pj) vjipi − pjvjipi

+(1− pj)
(
∂vji
∂ϕi

ϕ
i
+
∂vji
∂ϕj

ϕ
j

)
pi

− (1− pi) vijpj + p
i
vijpj

− (1− pi)
(
∂vij
∂ϕi

ϕ
i
+
∂vij
∂ϕj

ϕ
j

)
pj

]
= 0 , (8)

where p
i

is the phasor of the small-signal occupancy, and ϕ
i

the phasor of the quasi-static potential, which is the solution of
the small-signal Poisson equation. The admittance parameters
are calculated with the linearized version of the modified
Ramo-Shockley theorem (7).

Noise is calculated based on the Langevin approach for
the master equation. The power spectral density (PSD) of
the Langevin forces is given by twice the hopping frequency,
because hopping is a Poisson process similar to scattering or
generation/recombination [7], [8]. The transfer function Gk of
the terminal current due to the generation of a particle at site k,
is calculated by solving the linearized system for a Kronecker
function δi,k on the right-hand side of (8) together with the
small-signal Poisson equation by the adjoint method [9]. The
PSD of the terminal current is given with the linearization of
the modified Ramo-Shockley theorem (7) by

SII =
∑
i

∑
j 6=i

2q2
∣∣∣∣Gi −Gj −

xi − xj
L

∣∣∣∣2 (1− pj) vjipi ,
(9)

where the creation at site j and annihilation at site i is
explicitly taken into account, because this is not captured by
the transfer functions Gi, Gj .
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Fig. 1. Convergence of the algorithm for the device of Fig. 1(a) in Ref. [2]
at a temperature of 295K.

To obtain a stationary solution, first the Poisson equation
is solved, where the particle density is calculated based on the
Fermi-Dirac distribution and a Fermi energy, which linearly
varies between the two contacts. At equilibrium this yields
already the correct solution. In a second step a Gummel
iteration of the Poisson and master equations is performed,
where the Poisson equation is solved under the assumption
of a constant quasi-Fermi level for the charge carriers [10].
The iteration is stopped, when the RMS error of the potential
is less than 10mV. In the last step, a full Newton-Raphson
approach is used to solve both equations simultaneously [3].
The algorithm stops, when the RMS error of the potential
is smaller than 10−10V. In Fig. 1 two examples are shown
for different voltages. The algorithm converges well and the
Newton-Raphson method shows quadratic convergence. In the
case of low temperatures (e.g. 77K) it might be necessary to
run the Gummel iteration to a lower limit, before the Newton-
Raphson approach can converge.

III. SIMULATION RESULTS

The absolute value of the current and bias is used in
all figures for the sake of convenience and the results do
not depend on whether holes or electrons are simulated. The
device with the parameters given for Fig. 1(a) in Ref. [2] is
investigated. The terminal current of this device is shown in
Fig. 2 for four injection barriers and the results agree very
well with the ones in Ref. [2]. The CPU time for a single
step of the Newton-Raphson method is less than two minutes
on a single core of a current CPU for 65 × 100 × 100 sites,
where the linear system is solved with ILUPACK [11]. The
particle density (Fig. 3) varies strongly due to the different
injection barriers. The randomly chosen site energies are in all
simulations the same and they induce similar fluctuations in all
four cases. In the vicinity of the contacts the particle density is
increased by the image potential. In the case of the two lowest
barriers the particle density within the device is large enough
to have an impact on the potential (Fig. 4).

The small-signal conductance G(f) = <{Y (2πf)} (Fig.5)
and capacitance C(f) = ={Y (2πf)/2πf} (Fig.6) for an
injection barrier of 0eV show a strong dependence on fre-
quency revealing new information about the transport within
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Fig. 2. Terminal currents for the device of Fig. 1(a) in Ref. [2] for different
injection barriers at 295K.
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Fig. 3. Hole density for the device of Fig. 1(a) in Ref. [2] for different
injection barriers at 295K and a bias of 1V.
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Fig. 4. Potential for the device of Fig. 1(a) in Ref. [2] for different injection
barriers at 295K and a bias of 1V.
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Fig. 5. Conductance for an injection barrier of 0eV at 295K.
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Fig. 6. Capacitance for an injection barrier of 0eV at 295K.

the device (e.g. transit time). Compared to transient large-
signal simulations (e.g. Ref. [3]) the small-signal simulations
are more easily interpreted and contain more information, since
they also depend on the DC bias.

Another source for information on the transport processes
within a device is terminal current noise (Fig. 7). It shows
a strong dependence on frequency especially at low frequen-
cies due to the rather slow transport processes. Under non-
equilibrium conditions the noise contains additional informa-
tion compared to the admittance as can be gathered from the
noise temperature Tn = Sjj/4kB<{Y } (Fig. 8). Only in the
case of equilibrium the noise is given by the Nyquist theorem
(Tn = T0 = 295K) and no new information is obtained. For
equilibrium the Nyquist theorem is satisfied by the numerical
results with excellent accuracy validating our implementation.
At sufficiently low frequencies we expect shot noise, because
the particles cross a barrier when moving from the left to
the right-hand side. In the case of the two larger contact
barriers the barrier is located between the semiconductor and
contact, whereas in the other two cases it is within the device
due to the quasi-static potential (Fig. 4). In the latter case
a certain suppression of the shot noise might occur due to
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Fig. 7. Power spectral density of the terminal current for an injection barrier
of 0eV at 295K.
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Fig. 8. Noise temperature for an injection barrier of 0eV at 295K.

Coulomb interaction between the particles. In Fig. 9 the PSD
of the terminal current noise is shown at zero frequency. The
noise rapidly approaches shot noise (2qI) for increasing bias
(at zero bias thermal noise is obtained). Only in the case
of very large currents (high injection) the noise is slightly
modified by the interaction with the non-negligible space
charge (Fig. 3). This expected behavior of the noise again
validates our implementation.

IV. CONCLUSION

We have presented the first small-signal and noise cal-
culations for organic semiconductor devices based on the
master equation. The method shows good convergence and
at equilibrium the Nyquist theorem is satisfied with excellent
accuracy.
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Fig. 9. Zero-frequency power spectral density of the terminal current for
different injection barriers at 295K as a function of the current and shot noise.
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