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Abstract—In this paper, a comprehensive investigation of
quantum transport in nanoscaled gallium nitride (GaN) high
electron mobility transistors (HEMTs) is presented. A simulation
model for quantum transport in nanodevices on unstructured
grids in arbitrary dimension and for arbitrary crystal direc-
tions has been developed. The model has been implemented as
part of the Vienna-Schrödinger-Poisson simulation and modeling
framework. The transport formalism is based on the quantum
transmitting boundary method. A new approach to reduce its
computational effort has been realized. The model has been used
to achieve a consistent treatment of quantization and transport
effects in deeply scaled asymmetric GaN HEMTs. The self-
consistent electron concentration, conduction band edges and
ballistic current have been calculated. The effects of strain
relaxation at the heterostructure interfaces on the potential and
carrier concentration have been shown.

I. INTRODUCTION

Gallium nitride based high electron mobility transistors
have garnered increasing interest in recent years as viable
candidates for high power and high frequency applications [1].
They offer high breakdown fields due to their wide bandgap
and the strain-induced piezoelectric charge leads to high carrier
sheet densities at heterostructure interfaces [2]. The high
electron mobility allows for high-frequency applications of
these devices. More recently, HEMTs reached nanoscale gate
lengths in order to dramatically increase cutoff and maximum
oscillation frequency [3].

We investigate the quantum transport properties of high-
frequency GaN high electron mobility transistors using a
newly realized quantum transport model, that is part of the
Vienna-Schrödinger-Poisson (VSP) quantum electronic sim-
ulation framework. Previous work [4] was based on 1D
closed boundary Schrödinger-Poisson solvers and calculated
the source-drain current a-posteriori [5]. In this work, we
model a 2D/3D real-space Schrödinger system with open
boundary conditions resulting in a consistent treatment of
quantization and transport effects.

II. QUANTUM TRANSPORT MODEL

The quantum transport model is based on the quantum
transmitting boundary method (QTBM) [6] and implemented
in C++ within the VSP modeling framework [7]. Due to the
generality of the code, the model is applicable to arbitrary
device dimension, unstructured grids and arbitrary crystal
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Figure 1. Schematic of the model setup. The self-consistent loop is managed
by the SCLoop model which calls the Poisson model and the carrier model
EffMassQTBM iteratively. QTBMContact determines the injecting contact
modes; The QTBM model calculates the propagating waves, the carrier density,
and the current density at a specific energy. Energy integration is managed by
the Integrator class, which requires interface methods provided by Integrable.
QTBMContact and QTBM inherit from the Hamiltonian class to consistently
build the Hamiltonian matrix.

orientation rendering it useful for a wide range of applications.
Using the QTBM formalism, we obtain the solution to

(H−E I+Σ
R) |Ψ〉= |0〉 . (1)

To reduce computational effort, we do not solve the full system
directly. At each energy, we first calculate the retarded Green’s
function of the unperturbed system

(H−E I)−1 := GR
0 . (2)

For that purpose, we start by LU factorizing the system

LR UR = H−E I, (3)

which needs to be done only once. We solve the system
m times, once for each contact mode. The self-energy ΣR,
which is considered a low-rank update of the system, can
be exactly accounted for by solving a condensed m × m
system of equations. One obtains the wave functions ψi, the
transmissions Ti j between mode i and j and the occupation,
using a Fermi distribution for each contact. In a 2D device, the
contribution of each mode i to the carrier density at a given
energy E is written as

ni(x,E ) = ρ1D(E ,Ei) |ψi(x)|2 NCSF(E ,EF). (4)
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Figure 2. Structure of the GaN nanoscaled HEMT. The heterostructure
consists of a top barrier with a 2.5 nm GaN capping layer on a 3.5 nm AlN
barrier. The GaN channel is 20 nm thick and grown on an Al0.08Ga0.92N back
barrier to increase carrier confinement. The irregular mesh in the core device
region is overlaid for illustration. To the left and right the extended, highly
doped source and drain regions can be seen partially.

ρ1D(E ,Ei) is the energy-dependent 1D density of states of
mode i, NC is the effective density of states

NC =

√
m∗doskBT

2π-h2 , (5)

and SF is the supply function for a 1D carrier gas defined as

SF(E ,EF) = F−1/2(E ,EF). (6)

To calculate the total carrier density n and current density
J, an energy integration is necessary. For that purpose, we
developed an adaptive Integrator module based on our previ-
ous work [8], that automatically refines the energy grid, where
needed. As quadrature rule we apply the Clenshaw-Curtis
formula [9], which does not suffer from Runge’s phenomenon.

The schematic structure of the model, the simulation flow,
and the data interdependencies are depicted in Fig. 1. The
self-consistent loop is managed by the SCLoop model which
calls the Poisson model and the carrier model EffMassQTBM
iteratively. The carrier model calls QTBMContact to determine
the injecting contact modes. The propagating waves throughout
the device, the carrier density, and the current density at a spe-
cific energy are determined by the QTBM model. The energy
integration is managed by the Integrator class, which requires
interface methods provided by Integrable. QTBMContact and
QTBM inherit the description of the Schrödinger equation
from the Hamiltonian class. This modular approach ensures
flexibility and extensibility of the transport model. Due to the
computational efficiency of VSP and the quantum transport
model all the simulations can be run on standard workstations.

III. SIMULATION SETUP

We created a GaN HEMT test device based on the gen-
eration IV design from reference [3]. Structure creation and
meshing was done with the tool GTS Structure [10]. The
device features an asymmetric gate structure with 20 nm gate
length, a gate to source distance of 20 nm, and a gate to drain
distance of 80 nm. The top barrier consists of a 2.5 nm GaN
capping layer on a 3.5 nm AlN barrier. The GaN channel
is 20 nm thick and an Al0.08Ga0.92N back barrier is used
to increase carrier confinement in the channel. The device

region is unintentionally n-doped, whereas the source and drain
regions are highly n+-doped. The final structure with the mesh,
as used for the VSP simulation, is shown in Fig. 2.

GaN and AlGaN are materials forming dipoles across the
crystal which leads to interface charge at heterojunctions.
The charge forms due to the spontaneous and piezoelectric
contributions of the polarization divergence. We consider the
interface charge in the Poisson model and compute the het-
erointerface charge according to the formulas in [11]. The
polarization charge density at an AlxGa1-xN/GaN interface is
given by

σAlGaN/GaN = PGaN−PAlGaN (7)
=
(
Psp

GaN +Ppz
GaN

)
−
(
Psp

AlGaN +Ppz
AlGaN

)
, (8)

where Psp and Ppz are the spontaneous and the piezoelectric
polarization, respectively. The spontaneous polarization of
AlxGa1-xN alloys can be described by [11]

Psp
AlGaN(x) =−0.090x−0.034(1− x)+0.021x(1− x). (9)

The Pt metal gate and the GaN top capping layer form a
Schottky barrier of 1.15 eV height [12]. The highly n-doped
drain and source regions were modeled as a classical 3D
electron gas in thermal equilibrium. The core region of the
device is described by the QTBM model and the carriers are
injected at the contact/device interface segments.

The device is capped by a silicon nitride insulator layer.
The conduction and valence band offsets with respect to gal-
lium nitride have been set to ECBO = 2.5eV and EVBO = 0.6eV
(type II) according to [13].

IV. RESULTS AND DISCUSSION

We investigate two cases for the enhancement-mode
HEMT: (i) the heterostructure is strained and the full piezoelec-
tric polarization takes effect; (ii) the interfaces are fully relaxed
and no piezoelectric charge is induced. First, we calculate the
self-consistent electron conduction band edge with a bias of
VG = 0V and VDS = 1.0V for both cases (see Fig. 3). The
corresponding electron density for the Gen-IV HEMT at this
bias is shown in Fig. 4. For this device configuration, a channel
forms even with zero gate bias, which is confirmed by the
simulation result. In the strained device, the channel is fully
formed. For the fully relaxed case, a higher potential barrier
forms below the gate, leading to a reduced number of electrons
there. This is also reflected in the current density through the
device as depicted in Fig. 5. Due to the strong confinement
induced by the piezoelectric interface charge in the strained
device, the current is concentrated in the channel region near
the barrier. In the relaxed device, a partial loss of confinement
can be seen in the current density.

The energy-resolved electron carrier density spectrum on
a cut along the channel below the AlN barrier is shown in
Fig. 6. The carriers residing at the source and drain regions as
well as the extent of the channel can be clearly seen.

A cut through the device at the middle of the gate illustrates
the influence of the interface charges on the conduction band
edge (Fig. 7). The charges induce a strong field bending the
band edge down below the barrier. The Pt Schottky barrier
is recognizable as well. Figure 8 shows a comparison of the
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Figure 3. Self-consistent electron conduction band edge in the channel region calculated using the QTBM model at VG = 0V and VDS = 1V; left: no strain
relaxation is assumed and the full piezoelectric charge is taken into account; right: the heterostructure is fully relaxed and only spontaneous polarization is
assumed.

Figure 4. Self-consistent electron density in the channel region calculated using the QTBM model at VG = 0V and VDS = 1V; left: no strain relaxation is
assumed and the full piezoelectric charge is taken into account; right: the heterostructure is fully relaxed and only spontaneous polarization is assumed. Since
this is an enhancement-mode device, the electrons form a channel directly below the AlN barrier region at this bias; Without relaxation the channel is fully
formed, whereas for the relaxed device the influence of the gate potential can still be seen.

Figure 5. Self-consistent electron current density in the channel region calculated using the QTBM model at VG = 0V and VDS = 1V; left: No strain relaxation
is assumed and the full piezoelectric charge is taken into account; right: the heterostructure is fully relaxed and only spontaneous polarization is assumed. Due
to a larger interface charge in the fully strained device, stronger confinement is achieved. In the relaxed device, part of the current is flowing through the back
barrier region at a VDS of 1V already.
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Figure 6. Energy-resolved electron carrier density spectrum at VG = 0V and
VDS = 1.0V on a cut along the channel below the AlN barrier for an energy
range from −1.7 eV to 0.4 eV.
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Figure 7. Self-consistently calculated conduction band edge and carrier
concentration at VG = 0V and VDS = 1.0V on a cut centered at the gate.

energy resolved source-drain current density for the strained
and relaxed device. As expected, the current is confined to the
channel for the strained device. In the relaxed device, the well
is smaller and there is considerable current flow above it. The
transfer characteristics are depicted in Fig. 9.

V. CONCLUSION

We presented a quantum transport model for arbitrary
device dimensions, unstructured grids, arbitrary materials and
crystal orientation. We used the model to investigate a deeply
scaled gallium nitride high electron mobility transistor and cal-
culated self-consistent electronic band edges, carrier concen-
trations and ballistic currents. We have shown the influence of
strain relaxation on the current density and carrier confinement.
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Figure 8. Left: conduction band edge on a cut centered at the gate; right:
energy resolved source-drain current density. The HEMT was biased at VG =
0V and VDS = 1.0V. The confinement is reduced in the relaxed device.
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Figure 9. Current-voltage characteristics for the relaxed device at VDS = 1.0V
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