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Abstract—The Wigner equation can conveniently describe
quantum transport problems in terms of particles evolving in
the phase space. Improvements in the particle generation scheme
of the Wigner Monte Carlo method are shown, which increase
the accuracy of simulations as validated by comparison to exact
solutions of the Schrödinger equation. Simulations with a time-
varying potential are demonstrated and issues which arise in
devices with an externally applied voltage between the contacts
are treated, thereby further advancing the Wigner Monte Carlo
method for the simulation of semiconductor devices.

I. INTRODUCTION

The simulation of the time evolution of a wave packet, which

captures both particle- and wave-like physical characteristics

of an electron, has been touted as an effective tool to study

quantum transport in nanoscale semiconductor devices [1]. The

Wigner equation allows for the numerical treatment of transient

problems, like the evolution of a wave packet, and has garnered

interest in the semiconductor device simulation community in

recent times [2]–[5]. The latter is ascribed to the fact that the

Wigner formalism facilitates the study of quantum transport

phenomena, like tunnelling, using a phase space formulation

of quantum mechanics. As a consequence, existing classical

notions and models, like Boltzmann scattering mechanisms,

can be adopted in the Wigner equation. Furthermore, the

Wigner equation allows for a seamless transition between the

classical and quantum regimes [6], making it particularly well-

suited to study transport in mesoscopic semiconductor devices,

where both are at play.

The Wigner transform of the density matrix operator yields

the Wigner function fw (x, p). The associated evolution equa-

tion for the Wigner function follows from the von Neumann

equation for the density matrix, which for the one-dimensional

case treated here is

∂fw
∂t

+
p

m∗

∂fw
∂x

=

ˆ

dp′Vw (x, p− p′) fw (x, p′, t) . (1)

If a finite coherence length is considered [7], the momentum

values are quantized and the integral is replaced by a summa-

tion; the semi-discrete Wigner equation results:

∂fw
∂t

+
~q∆k

m∗

∂fw
∂x

=

K
∑

q=−K

Vw (x, q − q′, t) fw (x, q′, t), (2)

where q is now an index which, henceforth, refers to the

quantized momentum, i.e. p = ~ (q∆k), with a resolution

determined by the coherence length, ∆k = π
L . The Wigner

potential is defined accordingly as

Vw (x, q) ≡

1

i~L

ˆ L/2

−L/2

ds e−i2q∆k·sδV (s;x) ; (3)

δV (s;x) ≡ V (x+ s)− V (x− s) .

The Wigner Monte Carlo (WMC) method, used to solve

the Wigner equation, is introduced in Section II. An improved

particle-generation scheme is discussed, which helps attain

high accuracy simulation results – as validated by comparison

to exact solutions of the Schrödinger equation. Furthermore,

simulations with a time-varying potential are demonstrated.

Section III shows how the WMC simulator can be applied to

study the evolution of a wave packet in a semiconductor device

with an externally applied voltage between the contacts.

II. WIGNER MONTE CARLO

This section firstly briefly outlines the method applied to

solve the Wigner equation, whereafter the particle generation

scheme is revisted. The results obtained using the WMC

method are then validated by comparison to an exact solution

of the time-dependent Schrödinger equation.

A. Method Outline

Equation (1) is reformulated as an adjoint integral equation

(Fredholm equation of the second kind) and is solved stochas-

tically using the Monte Carlo method [8], along with the

particle-sign technique [9]. The latter associates a + or – sign

to each particle, which carries the quantum information of the

particle conveyed to it by the Wigner potential. The term on the

right-hand side of (1) gives rise to a particle generation term

in the integral equation; the statistics governing the particle

generation are determined by the Wigner potential (3), which

is normalized to unity (denoted by Ṽw).

A generation event entails the creation of two additional

particles with complementary signs and momentum offsets q′

and q′′, with respect to the momentum q of the generating par-

ticle. The two momentum offsets, q′ and q′′, are determined by

sampling the probability distributions V +
w (x, q) and V −

w (x, q),
dictated by the positive and negative values of the normalized

Wigner potential (Ṽw), respectively:

V +
w (x, q) ≡ max

(

0, Ṽw

)

; (4)

V −

w (x, q) ≡ max
(

0, −Ṽw

)

. (5)
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The generation events occur at a rate given by

γ (x) =
∑

q

V +
w (x, q) , (6)

which typically lies in the order of 1015 s−1
. This rapid in-

crease in the number of particles is counteracted by the notion

of particle annihilation, which keeps the number of particles

under control, thereby making the method computationally

feasible also for higher dimensional simulations.

The particle annihilation concept entails a division of the

phase space into many cells – each representing a volume

(∆x∆k) of the phase space – within which particles of

opposite sign annihilate each other, e.g. in a given cell with Pi

particles with a positive sign and Qi particles with a negative

sign, |Pi −Qi| particles shall remain after annihilation. These

particles are regenerated in the cell, each carrying the sign of

Pi −Qi.

B. Particle Generation

According to (3), the Wigner potential is anti-symmetric.

Therefore, it can be deduced that V +
w (·, q) = V −

w (·,−q). This

observation allows both distributions to be sampled by a single

random number generation – the generated particles will have

momentum offsets of q and −q – which is attractive from

a computational point of view and also a valid approach, if

a sufficiently large number of particles is considered in the

simulation (law of large numbers). However, a problem in this

approach arises, when the finite range of the q-values, forming

the limits of the summation ±K in (2), are considered: In (3)

the variable s, bounded by the finite coherence length L, is

transformed to the variable q, which also must be bounded to

ensure that the Wigner transform and its inverse are unitary.

Therefore, the value of K cannot be chosen freely but is

determined by the coherence length:

K =
L

2∆s
, (7)

where ∆s = ∆x is normally chosen to avoid an interpolation

between the grids.

The momentum offsets of the newly generated particles

should be such that their momenta remain within the set

bounds, i.e. (q + q′, q + q′′)ǫ [−K,K]. The problem arises if

particles are generated in pairs with momenta q ± q′, using a

single sampling of the distribution function V +
w (or V −

w ). To

maintain a balance of positive- and negative-signed particles,

it seems reasonable to reject both particles and sample the

distribution again, until a momentum offset appears which

renders both momentum values valid simultaneously. Such a

rejection technique clearly influences the statistics. Moreover,

the probability for a valid particle pair to be generated de-

creases, the closer the momentum of the generating particle

is to the limit ±K. In such a case, small momentum offsets

are more likely to produce a pair of generated particles with

valid momenta, thereby unfairly promoting the generation of

particles with high momenta and influencing the momentum

distribution of the particle ensemble as a whole. Due to this

biasing, it becomes less likely for high-momentum particles to

dramatically change their momenta and they persist.

The remedy to this systematic biasing is to not reject both

generated particles, if one is assigned a momentum which is

Table I. SIMULATION PARAMETERS

x0 [nm] σ [nm] Lcoh [nm] ∆k [nm−1] k0 [nm−1]
−29.5 10 100 π/Lcoh 12∆k

out of bounds, but rather only regenerate a single momentum

offset for the invalid particle. This approach allows high-

momentum particles to generate particles with a much lower

momentum, which no longer promotes a persistence of high-

momentum particles in the k-distribution. By rejecting (and

regenerating) only single particles, the balance of positively-

and negatively-signed particles is also not disrupted.

The rejection of generated particles with invalid momenta

does influence the statistics. However, the value of K, which

results for reasonable values of the coherence length L and

the mesh-spacing ∆s, is large enough to accomodate the

particle momenta which can be reasonably expected from a

physical point of view. A process which artificially induces

the generation of very high-momentum particles, approaching

the bound ±K, due to numerics will be exposed and treated

in Sec. III.

C. Validation

For validation purposes the exact solution of the time-

dependent Schrödinger equation is compared to results ob-

tained by the Wigner Monte Carlo method. An exact solution

of the time-dependent Schrödinger equation can be calculated

by

ψ (x, t) =

ˆ

dx′K (x, t;x′, t0)ψ (x′, t0) , (8)

where K (·) is the propagator function associated to the

stationary Hamiltonian describing the system and ψ (·, t0) is

the initial condition of the wave function.

As a benchmark problem a wave packet traveling towards

a square potential barrier, to its right, within a closed system is

considered here. The minimum uncertainty wave packet, which

serves as an initial condition, is defined as

ψ (x, t0) =
(

2πσ2
)−1/4

e−
(x−x0)2

4σ2 eik0z, (9)

with parameters given in Table I. The potential considered

here (square barrier) gives rise to analytic expressions for the

propagator [10], allowing an exact solution of the Schrödinger

equation to be obtained by a numerical integration of (8). This

exact solution avoids approximations associated to numerical

treatments and serves as a reliable basis for validation of the

results obtained by the WMC simulator. The Wigner transform

is applied to (9) to obtain the corresponding Wigner function,

which serves as an initial condition for the WMC simulation:

f (x,m, t0) =
1

π
e−

(x−x0)2

2σ2 e−(m∆k−k0)
22σ2

. (10)

Fig. 1 compares the solution obtained by the WMC method

and the exact solution of the corresponding Schrödinger equa-

tion, over a time sequence, for a 4 nm wide, 0.1 eV barrier

– the mean energy of the wave package is 0.067 eV. The

transmitted and reflected components of the wave packet are

evident, as supported by the k-distributions in Fig.2. For the

first time a truly quantitative match between the stochastic

solution of the Wigner equation and an exact solution of the



115

 0

 0.5

 1

 1.5

 2

-25  0  25

D
e
n
s
it
y
 (

n
o
rm

a
liz

e
d
 t
o
 p

e
a
k
 a

t 
t 0

)

x-position [nm]

t = 10 fs

Schroedinger (analtyical)
Wigner (stochastic)

0.1 eV potential barrier

 0

 0.5

 1

 1.5

 2

-25  0  25

D
e
n
s
it
y
 (

n
o
rm

a
liz

e
d
 t
o
 p

e
a
k
 a

t 
t 0

)

x-position [nm]

t = 30 fs

 0

 0.5

 1

 1.5

 2

-25  0  25

D
e
n
s
it
y
 (

n
o
rm

a
liz

e
d
 t
o
 p

e
a
k
 a

t 
t 0

)

x-position [nm]

t = 50 fs

 0

 0.5

 1

 1.5

 2

-25  0  25

D
e
n
s
it
y
 (

n
o
rm

a
liz

e
d
 t
o
 p

e
a
k
 a

t 
t 0

)

x-position [nm]

t = 70 fs

Figure 1. Charge density at various time steps for a wave packet (mean

energy of 0.067 eV) approaching a 4 nm wide, 0.1 eV high barrier.
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Figure 2. The k-distributions, corresponding to Fig.1, at 0 fs and 100 fs
showing the reflection and transmission from/through the barrier of a wave

packet initially centred around 12∆k.

Schrödinger equation is shown here, thanks to the modified

particle generation scheme.

Fig. 3 and Fig. 4 show the result of the same wave package

approaching a 0.3 eV barrier, which leads to almost complete

reflection. The simulation required a fine spatial resolution

(0.1 nm) to appropriately represent the sharp edges of the

square barrier along with an appropriately chosen coherence

length (cf. Table I).

Unlike for the discussed analytical method, the inclusion

of an arbitrary, time-depedent potential in the WMC simulator

is possible, but requires the Wigner potential, Vw, to be

recomputed at each time step. The computational cost of the

latter can be high (especially in higher dimensions), but can

be significantly reduced by using the specialised, box discrete

Fourier transform (BDFT) [11], which exploits the correlation

between the values of Vw amongst adjacent nodes. As a

validation of the WMC results, incorporating a time-dependent

potential, the potential barrier is made to rapidly oscillate

between 0.04 eV and 0.1 eV with a period of 20 fs, and the

result is compared to the bounds set by the exact solutions of

the limiting (static) cases in the spatial domain, as illustrated

in Fig. 5. Fig. 6 shows the k-distributions of the stochastic

solutions for the dynamic potential and the two limiting, static

potentials – the solution for the oscillating barrier remains

within the set static bounds. Moreover, a reflection of the

wave packet (0.067 eV) against the static 0.04 eV barrier can

be identified, which is consistent with the expected quantum

behaviour.
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Figure 3. Charge density at various time steps for a wave packet (mean

energy of 0.067 eV) approaching a 4 nm wide, 0.3 eV high barrier.
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Figure 4. The k-distributions, corresponding to Fig.3, at 0 fs and 100 fs,
showing almost complete reflection from the barrier.

III. APPLICATION

The preceding section showed that the WMC simulator

produces very accurate results, also for time-varying potentials,

which will be encountered when simulating semiconductor

devices. This section investigates a more realistic potential

profile, as opposed to a square potential barrier.

Fig. 7 shows a wave packet travelling, from the left, along a

potential profile suggesting the channel (in transport direction)

of a field-effect transistor (FET). The k-distribution (in blue)

shows three peaks: the initial distribution (around 12∆k; cf.
Fig. 2) is split into two parts, one slightly decelerated by the

small barrier, the other accelerated by the big potential drop,

while the third (smallest) peak suggests a reflection (also seen

in the spatial domain) with a change in energy much greater

than the potential difference between the left and the right

contacts (boundaries). The latter is not physically grounded,

but rather a consequence of applying the discrete Fourier

transform (DFT) to calculate (3), which implicitly assumes

a periodic repetition in the potential profile [12]. The potential

difference introduces a discontinuity resulting in a Wigner

potential which induces the generation of particles with very

high momenta.

The application of a Tukey window function, which

smooths the potential towards zero at the limits of the region of

coherence, clearly remedies this problem [12] (shown in red

in Fig. 7) and also avoids negative ’probabilities’ appearing

in the k-distribution, leading to more satisfactory, smoother

results overall.
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Figure 5. Charge density at various time steps for a 6 nm wide barrier

oscillating between 0.04 eV and 0.1 eV. The bounds are given by exact

solutions of the Schrödinger equation for the static, limiting cases.
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Figure 6. Comparison of the k-distributions (obtained by WMC) of the

pulsating barrier and the static barriers of the limiting cases, as in Fig.5.

IV. CONCLUSION

The presented benchmark tests show that the WMC method

has been matured to the point of providing highly accurate re-

sults, thanks to appropriate handling of the particle-generation

statistics. In addition, practical issues which arise when using

WMC to simulate semiconductor devices, e.g. time-varying

potentials and an externally applied voltage between the con-

tacts, have been treated. Moreover, all the presented considera-

tions conceptually extend to higher dimensions and the method

underlying the WMC simulator has already been shown to be

numerically feasible in two dimensions [13], thereby paving

the way for the accurate simulation of mesoscopic semicon-

ductor devices using the Wigner formalism.
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