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Abstract—We present a three-dimensional semi-classical 
ensemble Monte Carlo device simulator with novel quantum 
corrections. The simulator includes a beyond-Fermi treatment of 
Pauli-Exclusion-blocked scattering, and a valley-dependent 
treatment of various quantum confinement effects. Quantum 
corrections to the potential are used not only to model 
redistribution of carriers in real space, but also to model altered 
energy valley offsets and associated redistribution of carriers in 
k-space, and quantum-confined scattering rates, including a new 
approach to model surface roughness scattering. We illustrate 
the capabilities of the simulator using different levels of 
modeling, with an emphasis on modeling nano-scale FinFETs 
with degenerate carrier populations, including III-V devices. 
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I.  INTRODUCTION  
Nonconventional geometries and materials are being 

explored as options for complementary metal oxide 
semiconductor (CMOS) device scaling [1-4]. FinFETs (Fin-
shaped field effect transistors) increase gate control for 
improved transconductance, subthreshold slope and reduced 
short-channel effects [4,5]. Such gate control has been 
motivation enough for industry leaders to overcome the 
significant fabrication challenges posed by FinFETs [6]. 
Already incorporated at the 22 nm technology node, FinFETs 
are likely to drive scaling in future nodes [7]. Moreover, high-
mobility III-Vs are also being considered.   

As FinFETs shrink, predictive simulation becomes 
increasingly important for exploring the complex design space. 
Toward this end, we have developed a semi-classical ensemble 
Monte Carlo simulator to efficiently model transport in three-
dimensional (3D) nano-scale n-channel FinFETs, while 
capturing multiple quantum-mechanical effects. A beyond-
Fermi treatment of Pauli-Exclusion-blocked scattering is 
provided. Various effects of confinement are accounted for, 
including not only redistribution of carriers in real space, but 
also redistribution of carriers among energy valleys, and 
quantum-confined scattering, including a new approach to 

modeling surface roughness scattering. The simulator is 
illustrated through modeling In0.53Ga0.47As and reference Si tri-
gate semiconductor-on-insulator (SOI) ultra-scaled FinFETs. 

II. MODEL 

A. Monte Carlo in the Bulk Limit 
We first verified our simulation approach in bulk. We 

calculate bulk electron phonon scattering rates according to the 
Golden Rule as standard [8, 9]. Our simulator includes acoustic 
phonon scattering, intervalley optical phonon scattering, polar 
optical phonon scattering in III-Vs, and degenerate ionized 
impurity scattering using Thomas-Fermi screening [10]. 

We include non-parabolic band structures and multiple 
valleys per material: six Δ-valleys in Si; and one Γ-, four L-, 
and three X-valleys in III-Vs. We follow Fischetti [11] for 
material-specific effective masses, band non-parabolicities, and 
deformation potentials. For III-V ternary alloys, we employ a 
virtual crystal approximation, including bowing parameters for 
effective masses and intervalley separations [12], and 
associated alloy scattering [13].  

We have generated carrier drift-velocity vs. electric field 
curves for In0.53Ga0.47As and Si to verify bulk transport, 
providing excellent agreement with experimental data [9,14,15] 
requiring only small tuning of various deformation potentials. 

B. Quantum Corrections for Degeneracy 
Modern CMOS devices incorporate massive doping 

densities to reduce the parasitic source/drain resistance, and 
have ultra-low effective oxide thicknesses (EOTs), leading to 
degenerate carrier populations in the source, drain and, above 
threshold, in the channel. Under these conditions, Pauli-
Exclusion-Principle based blocking (Pauli-blocking, or PB) of 
scattering must be considered, and carrier populations can be 
forced well into the bands, particularly for electrons in III-Vs.    

 PB is achieved by considering the occupation probability f 
of the final (f) states ୤݂ in the Golden Rule transition rate S 
from initial (i) to the various final states, as 
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When considered in Monte Carlo device (vs݂ typically is approximated as a Fermi di
with position dependent Fermi energy (chem
temperature consistent with the carrier popul
energy [16-18]. However, this assumption 
justified in far-from-equilibrium condition
devices approaching the ballistic limit of per

We avoid a priori assumptions abou
Instead, we calculate f self-consistently 
position r, discretized energy El, energy
(currently) forward or backward direction o
This basic approach (with more k-space refi
used in bulk simulations before [8,9]. Her
technique to 3D devices. To gather suffic
average over nearest neighbor grid sites, and∆ݐ (here 120 fs) that are small compared to 
transients. Specifically, we calculate f as,                        ݂ሺܚ, ,௟ܧ ݃, േሻ ൌ ܰሺܚ, ,௟ܧ ݃, േሻ∆ݐ · ,௟ܧሺܦ ݃ሻ/2
where ܰሺܚ, ,௟ܧ ݃, േሻ is the number of
parameters ܚ, ,௟ܧ ݃, േ over the time period ∆
is the average density of states within the 
about ܧ௟ , for valley ݃ and either propa
Recently, we have incorporated the use o
fractional carriers, to avoid artifacts of cl
dynamic carrier-carrier scattering, which int
PB of final state pairs. In the process, 
improved the statistics for calculating the PB

Under equilibrium conditions the
occupation probabilities should and do re
distribution, as illustrated in Fig. 1 for 
In0.53Ga0.47As. Both low-electron densities 
associated classical (Boltzmann) distribut
degenerate electron concentrations of n = 5
inelastic scattering self-consistently limit
simulated. The difference in the electronic 
and without PB will inform our illustrative d

C. 3D FinFET Structure 
 We create a 3D cubic mesh with a 1 n
grid-mesh couples to the charge distribution a
profile via a nearest-grid point assignment to 
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Fig. 3 In0.53Ga0.47As FinFET (a) space-charge density 
to the transport direction with (b) no quantum cor
quantum corrections, where electrons are repelled from t

 The valley-dependent VQC can also lead t
charges among energy valleys. In In0.53G
wells, the light Γ-valley electrons exp
quantum confinement and, thus, a larger VQ
peripheral L- and X-valley electrons. T
separation between the Γ-valley and the pe
reduced, allowing the latter to become more
particularly with degenerate carrier populatio

 Scattering rates of quantum-confined carr
to oscillate about bulk scattering rates wh
referenced to the expectation value of the p
valley edge. However, the minimum ener
confined carrier can have relative to this e
greater than zero, and increases with inc
confinement. In this way, it can be se
confinement can significantly increase mi
rates for, particularly, randomizing/defor
phonon scattering. To model this effect, he
use the final state energy relative to the unc
potential V to determine the scattering rates 
states above the quantum corrected potential 

 Additionally, we now use VQC to model 
(SR) scattering. In both triangular wells (An
and in narrow infinite square wells [22], SR
quantum confinement energy cubed. 
refinement is possible in the future) we use a

                                                 ߬ௌோିଵ ൌ ܥ ொܸ஼ ଷ, 

where C is a calibration coefficient. Thus, w
two limiting behaviors as well as necessar
inverse-width dependence on average for w
while providing a simple mechanism for inte
general confinement geometries. Here we h
SR scattering rate to that obtained previousl
SiO2 interface (with quantum confined p
considered in both cases) [23]. 

III. ILLUSTRATIVE DEVICE SIMULATION
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TABLE II.  TRANSCONDUCTANCE  AS VARIED BY FIN WIDTH 

Material In0.53Ga0.47As: 5ൈ1019 cm-3 Si: 2ൈ1020 cm-3  

Width (nm) 11 6 3 11 6 3 

without SR 2.6 1.7 0.81 4.0 3.6 2.5 

with SR 2.3 1.4 0.56 3.4 3.0 1.7 

TABLE I.  MATERIAL COMPARISON FOR FINFET DEVICES 

Material In0.53Ga0.47As: 5ൈ1019 cm-3 Si: 2ൈ1020 cm-3 

Model Cl PB QC SR Cl PB QC SR 

gm (mS/μm) 12.1 4.9 1.7 1.4 3.6 4.2 3.6 3.0 

VT (V) 0.0 -0.4 -0.15 -0.15 -0.15 -0.2 0.0 0.0 

is less sensitive to PB of scattering due to its larger density of 
states, and less sensitive to quantum confinement due to a 
larger confinement effective mass. Indeed, for the [100] 
channel orientation, confinement helps localize carriers to the 
optimal [010] (fin-normal) valleys. This relative insensitivity 
to degeneracy and confinement effects leads to better 
performance for the Si-FinFETs, despite larger thermal 
velocities and conductivities to be found in bulk In0.53Ga0.47As.  
(The greater available doping in Si also helps, but ND=5ൈ1019 
cm-3 Si also outperforms the In0.53Ga0.47As devices of the same 
doping, if by less, in simulations not shown.)      

 We also examined gm as a function of fin width, as shown 
in Table II, in units of mS/μm. The lighter-mass In0.53Ga0.47As 
system suffers more severe degradation with decreasing fin 
width due to its pronounced vulnerability to quantum effects. 

IV. CONCLUSION 

 We have developed a 3D semi-classical ensemble Monte 
Carlo simulator with novel quantum corrections for PB of 
scattering and multiple confinement effects, including 
alteration of energy valley separations and a novel treatment 
of SR scattering. We have demonstrated the importance of the 
modeled effects through simulation of degenerately doped 
semiconductor In0.53Ga0.47As and Si FinFETs. Detrimental 
effects thereof were found particularly in the former system. 
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