# Density-Functional-Theory-Based Study of Monolayer MoS<sub>2</sub> on Oxide

 Amithraj Valsaraj, Leonard F. Register and Sanjay K. Banerjee Microelectronics Research Center and Department of Electrical and Computer Engineering The University of Texas at Austin, 10100 Burnet Road, Bldg. 160, Austin, TX-78758, U.S.A *amithrajv@utexas.edu*

> Jiwon Chang SEMATECH 257 Fuller Rd #2200, Albany, NY-12203, U.S.A

Abstract—Monolayer transition metal dichalcogenides (TMDs) are novel gapped two-dimensional materials with unique electrical and optical properties. Here, we study the effect of dielectric oxide slabs on the electronic structure of monolayer  $MoS_2$  using density functional theory (DFT) calculations. We also have simulated the effects of O-vacancies in the first few layers of the oxide on the band structure of the  $MoS_2$ -oxide system, showing here results for vacancies in topmost/ $MoS_2$ -adjacent O layer.

#### Keywords-component; transition metal dichalcogenides, oxygen vacancies, band structure, atom-projected density of states

#### I. INTRODUCTION

Monolayer transition metal dichalcogenides (TMDs) are novel materials with unique electrical and optical properties [1]. The two dimensional (2D) nature of monolayer TMDs makes their properties susceptible to the surrounding environment, as evidenced by the mobility enhancement of monolayer  $MoS_2$  when superposed on high-k dielectric such as  $HfO_2$ [2].

Here, we study the effect of  $HfO_2$  and  $Al_2O_3$  on the electronic structure of monolayer  $MoS_2$  using density functional theory (DFT). Two possible terminations for the  $HfO_2$  ( $Al_2O_3$ ) slab were considered: O-terminated  $HfO_2$  ( $Al_2O_3$ ) slab with H passivation and Hf (Al) terminated  $HfO_2$  ( $Al_2O_3$ ) slab. We calculate the band structure and the atom-projected density of states (AP-DOS) for these systems, and compare them to the results for freestanding monolayer  $MoS_2$ . We also have simulated the effects of O-vacancies in the first few layers of oxide on the band structure of the  $MoS_2$ -oxide system, showing here results for vacancies in the topmost/ $MoS_2$ -adjacent O layer.

## II. COMPUTATIONAL APPROACH

The DFT calculations were performed using the projectoraugmented wave method with a plane-wave basis set as implemented in the Vienna *ab initio* simulation package (VASP). The local density approximation (LDA) was employed for the exchange-correlation potential [3] and the calculated lattice constant is a good match to the experimental value [4]. In our study, two representative dielectrics HfO<sub>2</sub> (chosen for its high-*k* value) and Al<sub>2</sub>O<sub>3</sub> (minimal lattice mismatch) were considered. The hexagonal MoS<sub>2</sub> monolayer was taken to be unstrained, with a volume-relaxed lattice constant of a = 3.122 Å. For the dielectric oxide, the energetically stable crystalline phases of bulk HfO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> at ambient conditions, namely, monoclinic HfO<sub>2</sub> [5] and hexagonal Al<sub>2</sub>O<sub>3</sub> [6], respectively, were utilized.

Our simulations were performed by constructing a supercell of monolayer MoS<sub>2</sub> on an approximately 2 nm thick oxide slabs. For HfO<sub>2</sub>, atomic relaxation was performed within a rectangular supercell (a = 9.366 Å, b = 5.407 Å) chosen to reduce the lattice mismatch between monolayer MoS<sub>2</sub> and monoclinic HfO<sub>2</sub>, although a roughly 6% strain remains along the in-plane directions in the HfO<sub>2</sub> (Fig. 1). For Al<sub>2</sub>O<sub>3</sub>, atomic relaxation was performed in a (rotated) hexagonal supercell (a = 8.260 Å) with a strain of only about 0.2%. The systems were relaxed until the Hellmann-Feynman forces on the atoms were less than 0.02 eV/Å. Oxygen vacancies were modeled by removing a single O atom from an O-layer of the supercell.



Figure 1. Supercell of monolayer  $MoS_2$  on an H-passivated, O-terminated  $HfO_2$  slab of approximately 2 nm thickness (side view).



Figure 2. (a) Band structure of monolayer  $MoS_2$  on an O-terminated  $HfO_2$  slab with H-passivation, plotted along the high symmetry directions of the Brillouin zone (black lines). The band structure of freestanding monolayer  $MoS_2$  is superimposed for comparison (red lines). (b) Atom-projected density of states (AP-DOS) for the monolayer  $MoS_2$  and O-terminated  $HfO_2$  system.

### III. RESULTS

We have calculated band structure and the atom-projected density of states (AP-DOS) for these systems, and compared the results for the ideal  $MoS_2$ -oxide systems to those for freestanding monolayer  $MoS_2$ , and the results for the systems with O vacancies to the ideal  $MoS_2$ -oxide results.

The simulated band structure of monolayer MoS<sub>2</sub> on Oterminated HfO<sub>2</sub> with H-passivation is shown in Fig. 2(a). In these 0 K simulations, the 0 eV reference corresponds to the highest occupied state. Because a rectangular supercell was used in these simulations, the monolayer MoS<sub>2</sub> band edges at the K point of the freestanding MoS<sub>2</sub> Brillouin zone (BZ) are folded into the  $\Gamma$  point of the supercell's BZ. The band structure of monolayer MoS<sub>2</sub> is largely unaffected by the Hpassivated, O-terminated HfO<sub>2</sub>. The band gap is devoid of any defect states, suggesting the potential for HfO<sub>2</sub> to act as an excellent insulator or substrate. In addition, the direct band gap is preserved, which is crucial for optoelectronic applications. The absence of band gap states is also evident in the AP-DOS for the system (Fig. 2(b)). In contrast, our results indicate a significant reduction in the band gap of the Hf-terminated HfO<sub>2</sub> slab-MoS<sub>2</sub> system (energy gap  $E_g$  of approximately 0.9 eV) as compared to that of freestanding monolayer MoS<sub>2</sub>, although a direct band gap is preserved (Fig. 3(a)). We note however, that the valence bands near the  $\Gamma$  point are pulled upward in comparison to freestanding monolayer MoS<sub>2</sub> due to interface defect states arising from the contribution of Hf and O atoms, as illustrated by the non-zero density of states for these atoms near 0 eV in Fig. 3(b).

When an O vacancy is introduced into the top layer of the



Figure 3. (a) Band structure of monolayer  $MoS_2$  on Hf-terminated HfO<sub>2</sub> slab, plotted along the high symmetry directions of the Brillouin zone (black lines). The band structure of freestanding monolayer  $MoS_2$  is superimposed for comparison (red lines). (b) Atom -projected density of states for the monolayer  $MoS_2$  and Hf-terminated HfO<sub>2</sub> system.



Figure 4. (a) Band structure of monolayer  $MoS_2$  on an H-passivated, Oterminated  $HfO_2$  slab with an O-vacancy in the top layer, plotted along the high symmetry directions of the Brillouin zone (black lines). The band structure of vacancy free monolayer  $MoS_2$ - $HfO_2$  system is superimposed for comparison (red lines). (b) Atom-projected density of states for the monolayer  $MoS_2$  and O-terminated  $HfO_2$  system (with vacancy).

O-terminated and H-passivated HfO<sub>2</sub> slab, one new state (band in the case of these limited supercells) is introduced within the band gap of monolayer MoS<sub>2</sub> (Fig. 4(a)). The conduction bands also are pulled down in comparison to the vacancy-free MoS<sub>2</sub>-HfO<sub>2</sub> system in these simulations, while the valence bands show little change. The peak in AP-DOS for Hf and O atoms near 0 eV (Fig. 4(b)) correspond to the interface states arising from the missing O atom in the HfO<sub>2</sub> slab. These interface states would function as charge traps, leading to degradation of device performance. However, with regard to effects on the overall band structure, the O-vacancy density here is very large (areal density  $\approx 1.974 \times 10^{14}$ /cm<sup>2</sup>) and likely exaggerates the effect.

Our simulations of monolayer MoS<sub>2</sub> on O-terminated Al<sub>2</sub>O<sub>3</sub> with H-passivation again produce a band structure devoid of defects states, and minimal effect on the conduction bands of  $MoS_2$  (Fig. 5(a)). With a hexagonal supercell, the Brillouin zone retains the hexagonal symmetry and the band edges for the system remain at the K point. However, unlike for the HfO<sub>2</sub> case, the valence bands near the  $\Gamma$  point are shifted up by a small amount due to mixing of O, Mo and S atom states near 0 eV, as shown in the AP-DOS plot of Fig. 5(b). In contrast to the corresponding case in the HfO<sub>2</sub> system, the Al-terminated Al<sub>2</sub>O<sub>3</sub> slab-monolayer MoS<sub>2</sub> system has a limited reduction in the band gap, and interface defect states within the gap are absent (Fig. 6(a)). However, the valence band near the  $\Gamma$  point is lifted by a larger amount in this case than for the Oterminated Al<sub>2</sub>O<sub>3</sub> slab, making the system indirect here. The greater shift can be attributed to the stronger mixing of O atoms with Mo and S atoms, as supported by the larger DOS for these



Figure 5. (a) Band structure of monolayer  $MoS_2$  on an O-terminated  $Al_2O_3$  slab with H-passivation, plotted along the high symmetry directions of the Brillouin zone (black lines). The band structure of freestanding monolayer  $MoS_2$  is superimposed for comparison (red lines). (b) Atom-projected density of states for the monolayer  $MoS_2$  and O-terminated  $Al_2O_3$  system.



Figure 6. (a) Band structure of monolayer  $MoS_2$  on Al-terminated  $Al_2O_3$  slab, plotted along the high symmetry directions of the Brillouin zone (black lines). The band structure of freestanding monolayer  $MoS_2$  is superimposed for comparison (red lines). (b) Atom projected density of states for the monolayer  $MoS_2$  and Al-terminated  $Al_2O_3$  system.

#### atoms near 0 eV (Fig. 6(b)).

Creation of an O vacancy in the top O-layer of Al<sub>2</sub>O<sub>3</sub> introduces new states (bands) in the immediate vicinity of the MoS<sub>2</sub> conduction band edge that, again, pin the Fermi level there at 0 K. These defect states, thus, perhaps would serve as effective donors. However, with again high O vacancy densities ( $\approx 1.465 \times 10^{14}$ /cm<sup>2</sup>), the mixing of the defect states with the conduction band in these first-pass simulations is large, making precise interpretation difficult. In addition, at these high O vacancy densities, the valence band near the  $\Gamma$  point is pulled down, which is associated with a reduced DOS arising from the missing O atom as illustrated by the AP-DOS plot of Fig. 7(b).

#### IV. CONCLUSION

In summary, H-passivated, O-terminated HfO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> exhibit potential as good substrates or insulators for monolayer MoS<sub>2</sub>, with the band structure of the composite system devoid of any interface defect states within the band gap. However, monolayer MoS<sub>2</sub> on Hf-terminated HfO<sub>2</sub> shows a significant reduction of the band gap. In comparison, Al-terminated Al<sub>2</sub>O<sub>3</sub> slab looks more promising than Hf-terminated HfO<sub>2</sub> due to the absence of defect states. Introduction of O vacancies in the top layer of the dielectric oxide slab introduces band gap defect states in the simulated MoS<sub>2</sub> on O-terminated HfO<sub>2</sub> system, and near-conduction-band edge states that might serve as effective donors in the MoS<sub>2</sub> on O-terminated Al<sub>2</sub>O<sub>3</sub> system.



Figure 7. (a) Band structure of monolayer  $MoS_2$  on an H-passivated, Oterminated  $Al_2O_3$  slab with an O-vacancy in the top layer, plotted along the high symmetry directions of the Brillouin zone (black lines). The band structure of vacancy free monolayer  $MoS_2$ - $Al_2O_3$  system is superimposed for comparison (red lines). (b) Atom-projected density of states for the monolayer  $MoS_2$  and O-terminated  $Al_2O_3$  system (with vacancy).

#### ACKNOWLEDGMENT

This work is supported by SEMATECH, the Nanoelectronics Research Initiative (NRI) through the Southwest Academy of Nanoelectronics (SWAN), and Intel. We thank the Texas Advanced Computing Center (TACC) for computational support.

#### REFERENCES

- Mak, Kin Fai, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz. "Atomically thin MoS<sub>2</sub>: a new direct-gap semiconductor." *Phys. Rev. Lett.*, vol. 105, no. 13, 2010.
- [2] Radisavljevic, Branimir, Aleksandra Radenovic, Jacopo Brivio, V. Giacometti, and A. Kis. "Single-layer MoS<sub>2</sub> transistors." *Nat. Nanotechnol.*, vol. 6, no. 3, 2011.
- [3] Chang, Jiwon, Stefano Larentis, Emanuel Tutuc, Leonard F. Register, and Sanjay K. Banerjee. "Atomistic simulation of the electronic states of adatoms in monolayer MoS<sub>2</sub>." *App. Phy.s Lett.*, vol. 104, no. 14, 2014.
- [4] Böker, Th, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann. "Band structure of MoS<sub>2</sub>, MoSe<sub>2</sub>, and α-MoTe<sub>2</sub>: Angle-resolved photoelectron spectroscopy and ab initio calculations." *Phys. Rev. B*, vol. 64, no. 23, 2001.
- [5] Kang, Joongoo, E-C. Lee, and K. J. Chang. "First-principles study of the structural phase transformation of hafnia under pressure." *Phys. Rev. B*, vol. 68, no. 5, 2003.
- [6] Mo, Shang-Di, and W. Y. Ching. "Electronic and optical properties of θ-Al<sub>2</sub>O<sub>3</sub> and comparison to α-Al<sub>2</sub>O<sub>3</sub>." *Phys. Rev. B*, vol. 57, no. 24, 1998.