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Abstract—A TCAD model for Chalcogenide based CBRAM is
presented. This model starts from an existing model and uses an
advanced level set method to follow the growth of the filament
in the electrolyte. We couple the level set method with equations
which model the cations migration and the electric field in the
electrolyte and in the filament. We take into account silver clusters
in the electrolyte in order to study their influence on switching
time.

I. INTRODUCTION

Conductive-Bridge Random-Access memory (CBRAM) is
a promising technology for future nonvolatile memories, due
to its low operating voltages, low power consumption and
ease of integration in the back end of a logic process. A
CBRAM cell is composed of a resistive switching layer
encapsulated between an electrochemically active electrode,
and an electrochemically inert counter electrode. The storage
of the information is based on the contrast between a high
resistance state and a low resistance state. Resistance switching
is induced by electro-chemical driven growth and rupture of
a metallic filament in the electrolyte. During write operation
(SET), cations obtained from the oxidation of the top electrode
migrate through the electrolyte and are reduced on the filament
contributing to its growth. Starting from an existing model
[1], we improve the numerical implementation of the level
set method. The physical model is significantly improved by
taking into account nucleation and presence of clusters in the
electrolyte.

II. PHYSICAL MODEL

A. SET mechanisms

We study a CBRAM cell based on an active Ag top elec-
trode, a GeS2 electrolyte and a W inert electrode illustrated
by Fig. 1. Our model relies on assumptions considered in a
previous model [1].

Under a sufficient positive voltage on the active electrode,
the following mechanisms leading to the SET occur:

(i) Anodic dissolution by Ag oxidation:
Ag −→ Ag+ + e−

(ii) Migration of the Ag+ cations through the solid elec-
trolyte under the action of the electric field and the
gradient of concentration.

Fig. 1: a) 3D representation of study device, b) domain of
resolution with the dimensions of our cell and the definition
of the boundaries and reduction surface. The vector ~n defines
the normal at the boundary used in the expression of the
boundaries conditions.

(iii) Initialization of filaments with a nucleation mecha-
nism occurring on bottom electrode.

(iv) Filament growth through the reduction of Ag+ ions
on filament surface according to the reaction:
Ag+ + e− −→ Ag.

B. Oxidation and reduction model

Oxidation and reduction reaction are modeled with Butler-
Volmer equation which describes the electronic transfer across
the electrode interface as a function of an exchange current
density j0, a charge transfert coefficient α and the overvoltage
η:

JBV = j0

(
exp

[
αeη

kBT

]
− exp

[
−(1− α)eη

kBT

])
(1)

where, kB is the Boltzmann constant, T is the temperature and
e is the elementary charge. The overvoltage η is the difference
between electron Fermi level in the silver electrode and elec-
tron Fermi level associated to the redox couple Ag+/Ag in
the electrolyte GeS2:

η = EF,Ag − Ef,elec = (WF,Ag + Vap)− Eredox.

Neither experimental value of Eredox for Ag+/Ag in GeS2

nor the experimental value of j0 are available. Consequently,
these parameters are considered as adjustment parameters.

C. Nucleation model

The initialization of the filament is obtained with the
nucleation model presented by Milchev [2]. The nucleation
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rate is modeled through the equation:

Jnuc = C(Z0, Ncrit)exp

(
Ncrite | ηnuc |

2kBT

)
(2)

where ηnuc is the electrochemical overpotential. The pa-
rameter C(Z0, Ncrit) depends on the nucleation sites number
density Z0 and the number of atoms in a critical nucleus
Ncrit. Based on the nucleation rate, a stochastic algorithm is
implemented on the bottom electrode surface.

D. Ionic drift-diffusion model

We consider space charge in our solid electrolyte is reduced
to Ag+ cations and we calculate ionic concentration and
electrostatic potential with the equations:

e
∂CAg+

∂t
− div(eD∇CAg+ + σ∇V ) = f1bd (3)

−(eD∇CAg+ + σ∇V ).~n = JBV on B1

−(eD∇CAg+ + σ∇V ).~n = J ′BV on B2

−(eD∇CAg+ + σ∇V ).~n = 0 on B3

(4)

−div(ε∇V ) = eCAg+ (5)
V = Vap on B1

V = Vd on B2

∇V.~n = 0 on B3

(6)

The equation (3) models the charge conservation and the
Poisson equation (5) couples the electric field and the local
charge density. The equation (4) and (6) define the boundaries
conditions of our devices, the boundaries are illustrated by Fig.
1. The parameters V , CAg+ , ε, σ and D represent respectively
the electric potential, the concentration of Ag+, the permittiv-
ity, the conductivity and the coefficient of diffusion of Ag+.
We model the ionic conductivity with a non-linear expression
of an average electric-field Em = Vap/Hcell in the electrolyte

σ =
s0

Em
sinh

(
aeEm
2kBT

)
(7)

where s0 is a prefactor including temperature dependency
considered constant for our study, Hcell is the electrolyte
height and a is the jump distance of the ions. Our model
corresponds to a drift density of current ~jAg+ = σE inspired
by the model of Mott and Gurney [3] for an electric field driven
ion hopping.

The term f in equation (3) models the reduction on
the surface of the filament and 1bd is an interface filament-
electrolyte indicator function. We consider

∂

∂t

∫
Ωelec

C+
Ag = 0 (8)

A first approximation of (8) gives J ′BV = − S2

STE
JBV and

f =
Sfil

STE
JBV .

Fig. 2: Schematics of the variation of volume dV during
deposition step. A spatial discretisation of this variation δV
is expressed by considering a small surface δS moved during
a small time δt at the velocity vg .

E. Electrocrystallization and growth of the filament

Filament growth from critical nuclei is modeled using
Faraday law which is a relation between the deposited volume
and the deposition current:

dV
dt

= I(t)
VAg
e

(9)

where VAg = MAg/ρAg is the volume of an Ag atom, MAg is
the atomic mass and ρAg is the density of Ag. The term I(t)
represents the charge current though the interface. We consider
the volume change, illustrated by Fig. 2, can be discretized in
space by a velocity field ~v which moves a little surface of the
interface during a small time δt according to the normal of
the interface ~nbd. The scalar product vg = ~v.~nbd represents
the velocity of filament growth which is used in equation (4).
The velocity vg is be expressed by:

vg =
I(t)

δS

VAg
e

(10)

where δS represents the surface moved by the velocity field ~v
according to the normal at the interface ~nbd and δt is the time
step.

This expression of the velocity implies that the ions Ag+

which are close to the filament catch instantaneously an
electron, so electron transfer is faster than mass transfer.

F. Silver clusters

In GeS2 electrolytes, Ag-rich clusters, known to be good
ionic conductors, are observed experimentally [4] - [5]. Our
model is extended by taking into account several clusters in
the electrolyte. We consider that if a filament reaches a cluster,
the local ionic flux increases the silver concentration inside the
cluster. When a sufficient silver concentration is obtained, the
cluster electrical properties (ε, σ) equal those of the filament
[6] and the cluster becomes an electron supplier. Nevertheless,
clusters and filament chemical composition remain different
and nucleation step is needed to allow restarting of filament
growth.

III. PHYSICAL MODEL NUMERICAL IMPLEMENTATION

Inside the electrolyte, the filament area corresponds to a do-
main with higher electrical conductivity; physical coefficients
of our model have point value depending on the position in
the electrolyte. We use a level set method (LSM) to define a
function used to give space dependency in σ, ε and D.
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LSM introduced by Osher and Sethian [7] is a versatile
method used in many problems with an interface motion [8].
It allows including topological changes without explicit front
tracking method and thus provides considerable gain in both
algorithmic complexity and CPU time. This method implies
a space-time function ϕ with output between 0 and 1. The
interface between filament and electrolyte is defined by the
level set {ϕ = 0.5} . The level set function ϕ is solution of
an advection equation:

∂ϕ

∂t
+ ~v.∇ϕ = 0 (11)

where ~v represents the velocity of filament growth. Initial-
ization of ϕ is obtained through the nucleation model (2)
applied on the bottom electrode. When a filament reaches a
cluster, cluster and filament are merged as an extension of the
bottom electrode. The level set function ϕ is reinitialized from
a nucleation step which occurs at the cluster surface.

A. Level Set Method stabilization scheme

In order to stabilize the approximation of the solution
of equation (11), we adapt a stabilization scheme previously
proposed by Olsson [9]:

∂ϕ

∂t
+ div(ϕ(1− ϕ)~n)− ξ∆ϕ = 0 (12)

where ~n represents the normal at the interface and can be
expressed by ~n = ∇ϕ

‖∇ϕ‖ . These expression is not adapted in our
problem because the filament is in contact with the boundary
and ∇ϕ

‖∇ϕ‖ is not well defined on the boundary. We consider
the normal ~n is a solution of

~n− χ∆~n =
∇ϕ
‖∇ϕ‖

(13)

with the boundary condition

{
~n = 0 on B1 ∪B3

~n = (f(x), 0)t on B2
(14)

The boundary condition is necessary to obtained the normal
at the boundary with a good orientation as presented on Fig. 3.
The diffusive term in equation (13) is adjusted to regularize the
normal near the level set ϕ = 0.5 because at the interface the
normal presents numerical instabilities. As recommended by
Olsson [9], we take ξ = h, where h is the characteristic mesh
size. The choice of χ = 10−17 results from numerical tests.
The nonlinear hyperbolic equation (12) is discretized with the
scheme:

ϕn
k+1−ϕ

n
k

∆τ + div
(
ϕn

k+1+ϕn
k

2 − ϕnk+1ϕ
n
k

)
= ξ∇

(
ϕn

k+1+ϕn
k

2

)
.~ndiv(~n)

(15)

In order to stabilize the solution ϕn at each time step, we
implement equation (15) in an iterative scheme.

Fig. 3: Representation of f in order to obtain a good boundary
condition for (13)

TABLE I: Parameters used in the simulation.

Parameter Value Parameter Value

α 0.158 j0 10−2 A.m−2

T 300 K a 7.10−9 m

s0 2.107 A.m−2 Hcell 30 nm

WF,Ag −4.26 eV Eredox 0.7996 eV

MAg 1.79 10−21 g.at−1 ρAg 10490 kg.m−3

Fig. 4: Results of advection equation simulation with stabiliza-
tion scheme and no clusters. (a) Initial Filament, (b) Filament
at time t = 150ns, (c) ϕ at time t = 150ns, (d) Filament at
time t = 260ns, (e) ϕ at time t = 260ns

IV. RESULTS AND DISCUSSION

Our model is implemented using software FreeFem++ [10].
Equations (3), (5), (12), (13) and (15) are discretized using
Lagrange finite element on a cartesian mesh. The constants
used in simulations are given in Tab.I . We simulate the system
in a 2D domain corresponding to perpendicular cut plane of
the inert electrode in a 3D structure Fig. 1.

First, we study the stabilization effect of equations (12)
and (15) neglecting clusters contribution. The value of the
stabilization parameters ξ and χ are fixed by this first study.
Fig. 4 illustrates the efficiency of stabilization scheme after few
time steps. Please note that for long physical time, branched
filament topology appears (Fig. 4d-e).

Second, we introduce clusters in the electrolyte. When
the nucleation step is activated to reinitialize ϕ, we obtain
one or several critical nuclei where ηnuc depending on the
electrical field is stronger (Fig. 5a). From each nucleus, our
model succeeds to restart filament growth in the electrolyte
(Fig. 5b). The relative permittivity in the filament is chosen
large enough to model electrical neutrality inside the filament
(Fig. 6). The ionic conductivity and diffusivity inside cluster
show constant silver concentration inside the clusters (Fig. 7).
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Fig. 5: (a) Reinitialization of ϕ after a nucleation step implied
by clusters electrical properties changes at time t = 1.1µs. (b)
Filament at time t = 1.15µs.

Fig. 6: Electric Potential at time t = 1.45µs obtained with the
Poisson?s equation (5) and clusters.

Fig. 7: Cations concentration a time t = 1.45µs obtained with
the conservation law (3) and clusters.

Fig. 8: Results of filament growth with clusters in the elec-
trolyte at time t = 1.45µs

In a 2D domain with clusters, metallic filament can connect
clusters before reaching the top electrode (Fig. 8).

With the clusters inside the electrolyte, we study their
effects on the time required for the filament to reach the
silver electrode (switching time). Clusters are used by electrons

Fig. 9: Experimental and numerical switching time (tSET )
for CBRAM devices with a chalcogenide (GeS2) electrolyte.
Numerical switching time gives different results with clusters
in the electrolyte.

as bridge in the electrolyte when a filament touch a cluster,
so the switching time decreases (Fig. 9. The presence of
clusters could explained the variability in switching time
measurements.

V. CONCLUSION AND PERSPECTIVES

We improve the level set method implementation by ad-
justing the normal at the interface. We improve the physical
model by taking into account nucleation and Ag-rich clusters
in the electrolyte. The nucleation and filament growth in a
CBRAM device containing clusters can be simulated with our
model. The effect of silver clusters on switching time has been
studied and shows clusters change switching time.
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