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Abstract—Several reliability issues in MOS transistors - such
as the bias temperature instability, hot-carrier degradation, and
gate leakage - have been indicated to involve the capture and
emission of carriers at point-defects in the oxide. The trapping
behavior of these defects depends on the device temperature and
the oxide field in a highly non-trivial manner. Detailed capture
and emission time constants of single defects have recently
been obtained from time-dependent defect spectroscopy (TDDS)
measurements. The complex behavior of these time constants
is most accurately explained using a multi-state multi-phonon
model. In this model, the defects capture and emit carriers
through a non-radiative multi-phonon process. Additionally, each
defect has (at least) two internal states where each of them gives
rise to different trapping dynamics. We give a brief and hopefully
intuitive introduction to the theory of non-radiative multi-phonon
capture and emission and to the concept of multi-state defects.
The relation to the commonly used Shockley-Read-Hall defect
description in semiconductor device modeling is discussed.

I. INTRODUCTION

The miniaturization of MOS transistors in the past decade
has led to an increase in both the oxide field and the operation
temperature, increasing the demands for stability of the insulat-
ing oxide. Additionally, the introduction of new materials into
the production process results in more complex gate stacks.
This increased complexity has brought along an increase in
the number of defects in the insulating region, which severely
affects the transfer characteristics of the transistor. In conse-
quence, oxide-defect-based reliability issues such as the bias
temperature instability (BTI), hot-carrier degradation (HCD),
and stress-induced leakage currents (SILC) have climbed to
the top of the list of reliability concerns for current technology
nodes.

The explanation of the observed degradation effects and
accurate life-time projections pose new challenges for semi-
conductor device simulators. Semiconductor device simulation
is usually focused on defects in the semiconductor, which
influence the charge transport in the device through scattering
or recombination. The capture and emission of carriers at these
defects is usually quite fast and the dependence of the capture
rates on the applied voltage is largely determined by the carrier
concentrations. Additionally, as the semiconducting material
is usually crystalline, the defect sites are quite similar, which
leads to a negligible variation in the capture and emission rates
for different defects. Thus, a defect model based on average
transition rates often gives a good description of the behavior
of the defect ensemble.

σn n(x)vth

Fig. 1. In the Shockley-Read-Hall theory, the capture process is empirically
described as a flux of particles through an opening of area σ. The particle flux
is calculated by assuming that the carrier gas moves at the thermal velocity
vth.

For oxide defects, many of these simplifying conditions are
not fulfilled. As the capture and emission processes are slower
than in the bulk semiconductor, the charging and discharging
kinetics need to be modeled more accurately. Additionally, the
usually amorphous oxide makes every defect site unique and
average descriptions give poor results. In the last years, a lot of
information on the behavior of defects in the MOS oxide has
been obtained from bias-temperature stress experiments [1]–
[10]. The temperature and field activation observed in these
experiments cannot be explained with standard defect models.
Quite recently, the behavior of small-area transistors moved
into the focus of the scientific attention. In these transistors,
single charging and discharging events are visible as distinct
steps in the drain current [7], [11]–[17]. The response of these
small-area transistors to BT stress has revealed a quite complex
behavior of the oxide defects, including a highly non-linear
bias dependence of the time constants [18] and correlated gate
and drain current fluctuations [19]–[22]. In the following we
will focus on this recoverable component. The more permanent
component is a topic of current research and the different
explanations in the literature are still controversial [6], [8],
[23], [24].

Thorough investigations of the experimental data have led
to the development of a sophisticated defect model, which is
able to explain most of the observed behavior. This defect
model describes the carrier capture and emission as non-
radiative multi-phonon transitions and also accounts for dif-
ferent internal states of the defect. This document outlines
the basic properties of this multi-state multi-phonon defect
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Fig. 2. The emission rates in the SRH model are calculated from the principle
of detailed balance, which ensures that the occupancy of the defect in thermal
equilibrium follows Fermi-Dirac statistics.

model, starting from the commonly employed Shockley-Read-
Hall description of defects in semiconductors.

II. DEFECTS IN SEMICONDUCTOR DEVICES

The Shockley-Read-Hall (SRH) theory put forward in 1952
[25] is the standard model for phonon-assisted recombination
at defects in semiconductor devices. In the SRH model, the
recombination center is described by a capture cross section σ
and a trap level ET . The defect is treated as a localized state
that can either be occupied by an electron or unoccupied. The
time evolution of the occupancy of the defect f is described
as

∂f

∂t
= −(kdn + kpd)f + (knd + kdp)(1− f), (1)

where knd and kpd are the rates for electron and hole capture
(transition from the free state n or p to the localized state d),
and kdn and kdp are the rates for electron and hole emission
(transition from the localized state d to the free state n or p).

The capture process is modeled as a constant flux of the
carrier gas moving at the thermal velocity vth through an
opening of area σ, see Fig. 1. The emission rates are derived
from the principle of detailed balance [25], which ensures that
in thermal equilibrium, the occupancy of the trap level follows
Fermi-Dirac statistics for a state of energy ET . The capture
and emission rates in the SRH model read

knd = σnvthn(x), (2)
kpd = σpvthp(x), (3)

kdn = knd exp
(
−Ec − ET

kBT

)
, (4)

kdp = kpd exp
(
−ET − Ev

kBT

)
, (5)

see also Fig. 2.
In semiconductor device simulators, the SRH model is

combined with a drift-diffusion based description of the carrier
gas and an empirical parametrization for the defect centers
using constant capture cross-sections and trap levels. While
this description gives good results for the recombination at
defects in the semiconductor bulk several works have shown
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Fig. 3. In a simplified picture, the oxide defect gives rise to a localized state
in the forbidden gap of the insulator. Charge carriers can enter this localized
state through quantum mechanical tunneling.

that the detailed description of trapping kinetics requires a
more sophisticated theory [26]–[28].

III. PHONON-INDUCED TRANSITIONS

The physical process underlying thermally induced trapping
is the non-radiative multi-phonon (NMP) transition. A quan-
tum mechanical theory of NMP transitions was first published
by Huang and Rhys in 1952 [29], which has since been
broadly applied for the interpretation of measurement data
of kinetic trapping experiments [30]–[33]. Introductions to
multi-phonon transitions usually involve elaborate quantum
mechanics and require a broad knowledge of physical chem-
istry and mathematical physics. In the present document we
draw an intuitive picture for the special case of oxide defects,
with the purpose of introducing the reader to the relevant
concepts without going too much into the physical details.
More detailed discussions can be found in the original papers
[34], [35].

From the electronic structure point-of-view, an oxide defect
gives rise to a localized state within the forbidden gap of the
insulator, i.e. a state with limited spatial extent compared to
the quasi-free states in the valence and the conduction band
of the semiconductor. The charge carriers can enter or leave
this state by means of quantum-mechanical tunneling. These
tunneling transitions proceed elastically, i.e. the carrier neither
loses nor gains energy in the process. As the energy of the orbit
is sharply defined, only carriers which have the exact energy
of the trap level can be trapped. Thus, as illustrated in Fig. 3,
the trap level acts as an energetic selector and the capture rate
will be

knd ∝ T (Ed)Dn(xi, Ed)fn(xi, Ed), (6)

where T is a tunneling coefficient, and Dn and fn are the local
density of states and the occupation function for electrons.
Similarly, the rate of emission from the localized state reads

kdn ∝ T (Ed)Dn(xi, Ed)(1− fn(xi, Ed)). (7)

For the sake of simplicity, we introduce the density of occupied
electron states n(x,E) = Dn(x,E)fn(x,E) and write the
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Fig. 4. The energetic position of the localized orbit depends on the
instantaneous positions of the atoms in the defect structure. (top) At zero
temperature the atoms rest at their equilibrium positions, and the energy
of the localized orbit is sharply defined, as in Fig. 3. (bottom) At finite
temperatures, the energy of the localized state will oscillate in a chaotic way
due to the Brownian motion of the atoms. Thus, the sharp energy of the
transition process has to be replaced by a statistical distribution.

capture and emission rates as

knd ∝ T (Ed)n(xi, Ed), (8)
kdn ∝ T (Ed)(Dn(xi, Ed)− n(xi, Ed)). (9)

This description assumes a classical carrier model, which does
not account for quantum mechanical tunneling. In a quantum-
mechanical carrier model, the tunneling coefficient is included
in the densities which can then be evaluated at the defect site.

The energetic position of the localized electronic orbit
depends on the electronic structure of the defect. According to
the Born-Oppenheimer approximation, the electronic structure
of any molecule depends on the position of its constituent
atoms. For the trapping process, this implies that a well-
defined level of the localized state can only be given at
zero temperature, when the atoms are in their equilibrium
position. At finite temperature, the atoms of the MOS device
will exhibit a Brownian motion, randomly oscillating around
their equilibrium position. This influences the defect level,
which will also oscillate in an unpredictable fashion [36]. In
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Fig. 5. Quantum mechanical line shapes calculated from atomistic defect
models for three different temperatures. The 100K plots show oscillations due
to the quantization of the atomic vibrations.

consequence, at finite temperatures the sharp energy level for
the capture or emission transition is replaced by a probability
density f(E) which gives the probability to find the level
around a certain energy. This probability density is called
line shape function, due to its origin in optical spectroscopy,
where it describes the thermal broadening of absorption lines
[29], [30]. Generally speaking, it needs to be considered that
a change in the charge state of a defect changes its electronic
structure and in consequence the equilibrium positions and
oscillation frequencies. For this reason, the line shapes for
capture and emission will be different. In consequence every
charge transition has its own associated line shape. For this
reason we indicate the initial charge state qi and final charge
state qf for a line shape as fqi/qf . For an acceptor-like defect,
which is neutral when unoccupied and negatively charged
when occupied by an electron, the NMP transition rates read

knd ∝
∞∫

−∞
T (E)f0/−(E)n(xi, E)dE, (10)

kdn ∝
∞∫

−∞
T (E)f−/0(E)(Dn(xi, E)− n(xi, E)). (11)

The line shapes of the defect may also reach out to the valence
band of the semiconductor, making charge transitions by hole
capture and emission possible. The rates for these transitions
are analogous to their electron counterparts

kpd ∝
∞∫

−∞
T (E)f−/0(E)p(xi, E)dE, (12)

kdp ∝
∞∫

−∞
T (E)f0/−(E)(Dp(xi, E)− p(xi, E)). (13)

The line shape functions is determined by the Born-
Oppenheimer potentials of the defect in its various charge
states [37]. The calculation of the line shapes requires to
go into the details of the quantum-mechanical multi-phonon
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Fig. 6. The line shape is shifted by the electrostatic potential in the device.
The figure shows the position of a line shape (yellow) relative to the valence
band edge (red) and the conduction band edge (blue). Different gate bias
voltages lead to different band bending and different positions of the capture
line shape relative to the occupied charge carrier states. In the example, a
negative bias shifts the line shape maximum closer to the occupied hole states
near the silicon valence band edge. This increases the probability of a hole
capture transition, which corresponds to the typical NBTI situation.

theory, which goes beyond the scope of this document.
For all systems of practical interest the quantum-mechanical
line shape cannot be calculated exactly due to the high
dimensionality of the problem and the complexity of the
Born-Oppenheimer potentials. It is thus common to assume
parabolic potentials for the atoms in the different charge
states of the defect. In this approximation, the atomic mo-
tion is described as a superposition of harmonic oscillations,
which are called (local) eigenmodes of the vibration spectrum.
Commonly it is further assumed that only a limited number
(usually one) of these vibrational modes has an influence on
the transition while the contribution of the other modes can
be neglected. Analytical formulae are available for quantum-
mechanical line shapes if the frequency of the relevant mode
is not modified by the electronic transition [29], [30]. If the
frequency changes, the quantum mechanical line shapes can
still be calculated numerically [37], simple line shapes can
also be calculated using classical statistical mechanics. These
expressions neglect the quantum mechanical nature of the
vibrating atoms, which is a reasonable for room temperature
and above due to the large atomic mass [38].
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Fig. 7. Comparison of experimental capture time constants extracted from
TDDS measurements to SRH and NMP. The SRH theory cannot properly
explain the sharp decrease in the capture time constant at the onset of
inversion. The NMP theory explains the strong bias dependence of the capture
time constant very well between 0.8V and 1.8V. However, while the NMP
time constant decreases exponentially for higher bias voltages, which is linear
on the log scale, the experimentally observed time constants show some
curvature.

A. The Trap Level in NMP Theory
While the capture cross-section of the SRH theory is clearly

a construct of limited physical relevance, the trap level ET

can also be defined from the NMP theory. To do this, it is
necessary to realize that the trap level of SRH theory does not
refer to a quantum-mechanical level but a thermodynamical
potential. This “thermodynamic” trap level [26], [32], [39],
[40] is defined as the value of the electronic chemical potential
(Fermi level) at which the defect changes its charge state in
thermal equilibrium. For a donor-like trap this means if the
Fermi level is below the trap level, the defect is dominantly
in the positive state, while if the Fermi level is above the
trap level, the defect is dominantly in the neutral state. Due
to the differences in the electronic structure, the vibrational
properties of the defect may vary strongly between the charge
states. These differences add a change in entropy to the trap
level, which is consequently slightly temperature dependent
[26], [32].

B. Temperature and Field Activation
The NMP theory explains both the temperature and the field

activation of the transition process which is experimentally
observed. An increase in the temperature results in a broad-
ening of the line shape, as shown in Fig. 5, which increases
the capture probability the more, the further away the carrier
energy is from the line shape maximum.

The field activation is stronger in oxide defects than in bulk
defects due to the absence of free carriers. Just as for the
valence and conduction band edges, the energetic position of
the line shapes depends on the electrostatic potential in the
device. Depending on the applied bias voltage, the electrostatic
potential shifts the maximum of the line shape closer to or
further away from the occupied states and thus increases or
decreases the capture probability, see Fig. 6.

IV. MULTI-STATE DEFECTS

Several experimental observations indicate the existence of
internal defect states:
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the transitions between different charge states are non-radiative multi-phonon
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• Decorrelation and bias frequency dependence of the

capture and emission time constants. A simple defect
model which only switches between two charge states
through an NMP process has an inherent correlation
of the capture and emission time constants, which is
in contrast to the experimental observations [18]. In
addition, BT stress experiments with an AC stress voltage
have found a frequency dependence of the capture time
constant [41]. This frequency dependence is not explain-
able using a two-state defect but arises naturally from a
multi-state defect model.

• Curvature in the bias dependence. The gate bias depen-
dence of the capture time constants obtained from time-
dependent defect spectroscopy (TDDS) measurements
shows a curvature on the log scale in deep inversion,
while NMP theory predicts an almost linear behavior in
this regime, see Fig. 7 [7], [18].

• Anomalous and temporary RTN. In small-area transis-
tors, the charging and discharging of defects is visible as
steps in the drain current. The response of some of these
defects following bias-temperature stress shows a tem-
porary random-telegraph-noise signal which disappears
after a while, see Fig. 8. This change in the trapping
behavior of the defect is easily explained by different
internal defect states with different capture and emission
time constants.

All this behavior is well-explained by the multi-state multi-
phonon model [7], [18], [42]. This model has been developed
to explain the degradation and recovery behavior observed in
bias temperature stress experiments, but has also been applied
to random telegraph noise (RTN) and trap-assisted tunneling
scenarios. As illustrated in Fig. 9, the model assumes that
the oxide defects can exist in two charge states 1 and 2. In
each charge state, the defect can assume one of two internal
— or structural — states, which are denoted as 1 and 1′ in
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charge state 1, and as 2 and 2′ in charge state 2. It is generally
assumed that 1 corresponds to a neutral charge state, and 2 to
a positive charge state.

While the transitions between the charge states 1 � 2′ and
2 � 1′ are described using the NMP capture and emission
rates (10)-(13), the transitions between the internal states 1 �
1′ and 2 � 2′ are described as an energetic barrier hopping
transition using an Arrhenius law

kαβ = ν exp
(
− Eαβ

kBT

)
, (14)

with (α, β) ∈ {(1, 1′), (1′, 1), (2, 2′), (2′, 2)} where ν is the
attempt frequency and Ea is the activation energy for the
transition. The existence of internal defect states is a well-
studied fact for different defects in SiO2 [40], [44]–[49]. A
classical example for a bistable defect as in the multi-state
multi-phonon model is the oxygen vacancy in silicon dioxide
[40], [50]. As shown in Fig. 10, this defect can exist in a dimer
state, where the silicon atoms adjacent to the vacancy form a

bond. By overcoming an energetic barrier, which happens by
chance through the random motion, one silicon atom can relax
back and bond to a back-oxygen. This second configuration
has different equilibrium energetics and oscillation frequencies
and consequently different trapping behavior. Both of these
bonding configurations can exist in both the neutral and the
positive state. While the oxygen vacancy is usually taken as
an example to illustrate the concept of a multi-state defect,
the actual defect structure responsible for the experimentally
observed degradation is still unknown and a topic of current
research [50]–[55].

Once the states of the defect and the transition rates between
those states are defined, the transient behavior of the defect
can be modeled. While a two-state defect is fully described
by a single occupancy function as in (1), a multi-state defect
requires to assign a probability pα(t) for every state α of
the defect. These probabilities have to fulfill the condition∑

α pα(t) = 1. The time evolution of these probabilities is
described by the master equation

∂pα
∂t

=
∑
β �=α

kβαpβ(t)− kαβpα(t). (15)

As shown in Fig. 11, this multi-state model drastically im-
proves the reproduction of the experimentally observed capture
and emission time constants [7], [22], [42], [56]. Especially
for the case of TDDS extracted effective capture and emission
time constants, approximate expressions have been derived
which represent the multi-state defect as an effective two-state
defect.

For the description of the recoverable component of the
BTI in large-area MOS devices an ensemble of defects with
a random distribution of parameters for both the structural
reconfiguration and the NMP transitions is generated. This
defect ensemble must be large enough to capture the large
variation of energy landscapes for the defects that arises from
the amorphous nature of the MOS oxide. The degradation and
recovery transients are then obtained from the integration of
(15) for all the defects in the ensemble [5], [43], see Fig. 12.

V. CONCLUSION

The modeling of the oxide defects involved in the reliability
issues of modern MOS transistors such as the bias temperature
instability, hot-carrier degradation and gate leakage requires
a detailed description of the electrochemical reactions at the
defect site. The recently developed multi-state multi-phonon
model successfully reproduces a wide range of experimental
data. We have given a brief introduction into the physical the-
ory behind this defect model. The non-radiative multi-phonon
theory, which describes the exchange of carriers between the
defect and the rest of the device, as well as the concept of
internal defect states have been introduced and compared to
the standard Shockley-Read-Hall defect model. Examples have
been given for the successful application of the model to
experimental data.
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