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I. INTRODUCTION

TCAD plays an increasingly critical role in advanced 
technology research and development. The areas of impact 
expanded to not only predicting device outcome from process 
input, but also to topics traditionally not addressed by TCAD. 
New TCAD simulation models and methodologies need to be 
developed when technology advances beyond classical scaling 
regime. The growing number of materials used in devices 
increases process complexities, experimental design space and 
R&D cost. Accurately accounting for stress enhancement in 
various wafer or channel orientations, and in different channel 
materials is essential to yield predictive simulation of modern 
devices. Proper and predictive transport modeling in various 
materials and structures is one of TCAD’s most significant 
challenges. The use of atomistic level and full quantum 
mechanical simulations becomes indispensable in order to 
explore materials beyond these having readily available data. In 
order to deliver timely guidance in development, TCAD needs 
to be calibrated to have reasonable predictability before reliable 
data become available. This requires a rethinking of calibration, 
which needs to be geared toward targeted applications, with 
main goal to increase its predictive ability in that specific 
application. A hierarchical approach which leverages ab-initio 
calculations, KMC, and continuum models to deliver predictive 
simulations can be highly desirable. TCAD has also been 
increasingly called upon to address variability and reliability 
simulations. 

II. DEVICE SCALING TREND AND NEW TCAD CHALLENGES

A. Enhancement to classical scaling 
CMOS chip scaling, predicted by Moore’s Law [1], has 

been the main driving force behind the phenomenal growth of 
semiconductor industry. The key to scaling is achieving ~2
increase of circuit density as well as significant transistor 
switching performance with every technology node. 
Amazingly, both density and transistor performance gain had 
been realized for more than three decades by a simple 
geometrical and supply voltage scaling, first projected by 
Dennard, et al. [2] in 1974. However, a few years into the new 
millennium, this straight forward scaling started failing to 

realize expected transistor performance gain due to gate 
leakage limiting Tinv scaling and off state leakage with 
worsening short channel effect limiting Vt scaling, as 
illustrated in Figure 1 [3]. 

In the last decade, various innovations have been 
introduced to make up for these transistor performance short 
falls. As illustrated in Figure 1, these innovations include 
channel mobility enhancement by process-induced strain [4-10], 
Tinv scaling with gate tunneling reduction by high-K/metal 
gate [11-13], and electrostatic control improvement by
transition from planar single gate to 3D FinFET/Multi-Gate 
FET (MUGFET) structures [14-20].  

Fig. 1 transistor architecture trend chart [3] 

These transistor performance enhancements have also 
increased process complexity significantly. In addition to 
geometry and profile engineering, the mechanical stress and its
electrical response became an integral part of what determines 
the device behavior. TCAD quickly expanded beyond 
electrostatic and doping profile simulations. 

The first TCAD expansion is in prediction of transistor 
characteristics with engineered stress or strain. The simulation 
of process induced stress has gone through several 
improvements. It was pointed out that accurate accounting of 
stress, even in planar devices, needs rigorous 3D simulations 
[21-22]. Then the influence of multiple process steps on stress, 
such as stress memorization and stress enhancement by gate 
material replacement, were simulated [23-24]. In addition, to
understand and predict many of the process induced stress 
technologies, atomistic level simulations may be needed. One 
example is the simulation of the formation of dislocation which 
can serve as a source to generate tensile channel stress [25]. 
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Figure 2 illustrates the use of molecular dynamics simulations 
to predict the formation of dislocations and the resulting stress 
profile.  

               (a)                                                   (b) 

Fig. 2 (a) MD simulation result of SPER process with applied 
external stress (b) The MD simulation stress contour induced by a 
SMT dislocation [25]

The second TCAD expansion is to simulate high-K
dielectric and metal gate (HK/MG). The challenge is to 
engineer the gate stack to achieve targeted Jg, DIT, mobility, 
and suitable Wf. Opportunity to greatly reduce development
time and cost if the vast process space can be screened by 
simulations and material choices can be narrowed down. 
Indeed, some success in leveraging ab-initio simulations to 
study gate stack have been reported, for instance, in predicting 
influence of impurities on effective work functions [26-27], in 
predicting the dipole formed  at the silicon oxide and high K 
material interfaces [28], and in predicting other gate stack 
related properties such as NBTI [29]. Figure 3 shows an 
example of ab-initio model of the HfO2/SiO2 interface for eWf 
predictions. 

  
Fig. 3 On the left is the atomic structure of incorporating Al 

at HfO2-SiO2 interface. On the right is the calculated VBO vs 
experimental Vfb showing a monotonic correlation [28] 

The third TCAD expansion is simulation of multi-gate 
devices. There are many challenges, for instance, to correctly 
simulate a FinFET requires models to account for transport on 
the side wall of the FinFET which is typically close to (110) 
surfaces. In the realistic case, the side wall channel could be 
sloped off vertical (110) direction, and the channel stress can 
be different from simple uni-axial stress and may consist of 
several none-zero components. The mobility stress response 
may not be accurately represented by a simple linear 
combination of response to individual stress components, such 

as reported in [30-31]. Figure 4 illustrates the complex stress 
dependent on different surface orientations. 

Fig. 4 Hole mobility polar plots for (110)/[1-10] in response to 
three stress components [30] 

From planar to FinFET, another change is inversion layer 
quantization. When the fin width is scaled down, the inversion 
layer quantization deviates from triangular well approximation 
and gets into volume inversion determined by geometrical 
confinement.  

The inversion layer mobility along the side wall channel of 
FinFET can be simulated by a double gate structure. Multi 
Sub-bands Monte Carlo device simulations show that the 
mobility on the FinFET sidewall channel starts to significantly 
deviate from that of single gate on the same surface orientation, 
as illustrated in Figure 5 [32].

Fig. 5 Volume inversion affecting inversion mobility becomes 
prominent in FinFET [32]

The quantization effect becomes even more pronounced in
nano-wire transistors. More new physics need to be considered 
arising from nano-wire’s 1D nature of carrier transport [33-34].
Nano-wire transistor structures display much better SCE 
control and thus allow more aggressive channel length scaling. 
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However, at extremely scaled channel length, source to drain 
tunneling current can no longer be neglected. Consideration of 
tunneling is important to correctly predict device performance, 
as reported in [34] and shown in Figure 6. 

Fig. 6 Significant source to drain tunneling current [34].

B. New materials and atomistic modeling 
To further enhance device performance, there are two paths 

being explored. One path pushes toward higher mobility by 
engineering the channel material, and the other leverages a new 
gate switching mechanism such as tunneling FET to push the 
sub-threshold swing below the thermal limit of 60mV/dec.
Well calibrated predictive TCAD simulations can provide 
tremendous value in assessment of both paths.  Good progress 
in simulating both the nano-wire transistors with various 
channel materials and the TFET with exotic junction designs 
were reported [35-38]. Evidently, simulations including 
rigorous quantum mechanics at atomistic level show promise 
with simulations in good agreement with experiments without 
much empirical fitting [37]. Figure 7 shows examples of 
atomistic simulations of TFET devices. 

  

              

Fig. 7 On the left, TFET simulations validated to 
experiments. On the right, scaled TFETs are predicted to 
performance better than scaled MOSFETs [37]. 

C. Beyond charge logic 
As long as electric charge is used as the logic state variable, 

Zhirnov et al. pointed out that energy reduction will hit a lower 
bound dictated by the Heisenberg/SNL limit [39]. To move 

further down in energy consumption, new logic state variable 
other than charge needs to be explored.  Spintronics, which 
uses spin to represent the logic states which also has the benefit 
of being non-volatile, holds promise to lower the switching 
energy [40-43].  The simulation of spin based devices [44-45] 
presents another area of expanding usage of TCAD. 

III. EXPANDING TCAD ROLE THROUGH OUT R&D STAGES

A. Exploratory and path finding stage 
R&D cost continues to rise due to the increasing 

complexity of processes. In the early exploratory stage of a 
new technology node, companies face tough decisions to 
choose from a multitude of technology choices. It is rarely the 
case to have enough experimental data at this stage to help 
narrow down technology choices. Therefore TCAD, with 
proper physical models, if applied to pre-screen and help down 
select, bringing tremendous value to R&D. Atomistic ab-initio 
simulations became feasible due to the extremely scaled 
dimensions and the availability of vastly higher computing 
power. As shown earlier, atomistic simulations have been 
useful in assess performance potentials of the intrinsic device. 
However, when incorporated in the integrated circuit with real 
processes, many parasitic components surrounding the intrinsic 
device have to be considered together as a whole device system. 
A hierarchical approach may need to be adopted. One may 
simulate the intrinsic device or new channel material using full 
atomistic models, then capture these in a semi-classical Monte 
Carlo simulator. The MC simulation results can further be used 
to calibrate continuum device simulator which can then be used 
to make assessment of realistic device structures. This 
approach may be illustrated schematically in Figure 8. 

Fig. 8 Hierarchical appraoch combines atomistic simulations 
 MC simulations continuum simulations.  

B. Development stage 
Beyond assisting in diagnoses of experimental results using 

TCAD simulations, accurate prediction of results from process 
changes is very valuable. In addition to solid models and pre-
planned calibration to SIMS, it is often desirable to generate 
predictive continuum model quickly with no existing data for 
calibration. Leverage KMC is showing promise [46-48]. The 
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defect-dopant cluster and reaction rate can be simulated. A 
hierarchical approach can be useful, as shown in Figure 9 [49]. 

Fig. 9 A hierarchical approach for process simulations [49]. 

C. Production stage 
In the production stage, quick turn prediction to guide 

experiments and process changes is highly valued. It is possible 
to combine TCAD simulation results and DOE experimental 
data to build a RSM to serve this purpose. Such approach has 
been reported earlier [50]. The importance of controlling 
variability has become increasingly important with scaling. The 
first step to control variability is to simulate it.   Progress in 
modeling of local variations has been reported steadily since 
RDF (random dopant fluctuation) was brought into attention 
[51-53]. Monte Carlo stochastic approach is commonly used to 
estimate Vt mismatch sigma, however, a large number of 
simulations are needed to reach desired accuracy [54]. A 
deterministic approach allowing relative Vt variation 
comparison for process optimization purposes may be a 
desirable alternative [55]. Progress in variability simulations of 
FinFET and nano-wire transistors has also been reported 
recently [56-57]. SRAM yield and Vccmin is largely determined 
by both local and global variability. Ultimately, SRAM yield 
and circuit corner performance may be predicted and optimized 
by the assistance of TCAD simulations. 

IV. CONCLUSIONS

Technology scaling presents abundance of opportunities 
where TCAD can make significant contributions. However, 
considerable development effort is required to bring new 
physics into TCAD tools. Expanding role of predictive TCAD 
is expected, which will span to atomistic, full quantum 
mechanical simulations, as well as TCAD based quick turn 
simulation models, SRAM and circuit applications. We expect 
TCAD to become an essential part of strategy for companies to 
contain R&D cost and continue timely delivery of new 
technology nodes. 
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