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Abstract—In this paper, we report our novel Monte Carlo 
quasi self-consistent particle simulation method for both electron 
and phonon transport in nanometer-sized electron devices. We 
developed two kinds of simulation procedures for the Monte 
Carlo method. First, we made a program to estimate the local 
temperature from a phonon spatial distribution, where we used a 
Bose-Einstein distribution function, the phonon density of states, 
and the phonon generation rate. Second, we developed an 
algorithm that made it possible to calculate multiple time scale 
phenomena of electron and phonon transport by introducing 
different time steps for electron and phonon transport 
simulations. With these methods, we succeeded in executing quasi 
self-consistent simulations of both electron and phonon transport 
in nanometer-channel FETs in consideration of saving computer 
processing time. Using these methods, we simulated the local 
heating properties of nanometer-scale gallium nitride FETs for 
the first time. Our FET model includes highly doped source and 
drain regions near the electrodes. It was found that phonon 
generation takes place mainly in the highly doped drain region, 
rather than in the high electric field regions of the channel or 
between the gate and drain. We discuss the physical basis of the 
spatial distributions of heat generation and local temperature in 
the GaN channel. 

Keywords—Phonons; Monte Carlo methods; Field effect 
transistors; Thermal management of electronics. 

I.  INTRODUCTION 
Due to high density integration of LSIs and high power 

applications, the thermal management of electron devices has 
become more and more important. GaN has been expected for 
use for high-frequency and high-power applications due to its 
large bandgaps, high breakdown voltage, and high electron 
drift velocities. Previously, to simulate electric and heat 
transport phenomena in electron devices, a fluid model based 
on the Maxwell distribution functions was used. For an 
advanced electron device scaled below or comparable to the 
size of the electron mean-free-path, the Monte Carlo particle 
simulation method has been used as the most reliable and 
accurate method for calculating non-stationary electron 
transport [1]. Similarly, because the mean free path of a 
phonon also becomes comparable to or less than the size of a 
typical device, thermal properties should be analyzed for non-
stationary state phonon transport. Using the Monte Carlo 
particle method for both electron and phonon transport [2] 

should be the most accurate theoretical approach. However, 
there are two big problems. The first is that the simulation 
algorithm for local temperature estimation from phonon 
distributions has not yet been established. The second is that, 
because of a large difference in time scales between electron 
and phonon transport phenomena, performing a self-consistent 
simulation for both electrons and phonons in a realistic amount 
of computer processing time would be very difficult. 
Additionally, it is also important for future phonon engineering. 
In this paper, we report novel quasi self-consistent algorithms 
for the Monte Carlo method with a reasonable computing time 
[3] and report the electrical and thermal properties of GaN 
FETs calculated for the first time when using these methods. 

II. SIMULATION METHOD 
Figure 1 shows the algorithm of our simulation. It consists 

of two parts: an electron transport part to obtain the spatial 
distributions of phonon emission and absorption and a phonon 
transport part to estimate local heating in a device. By 
introducing the feedback of local heating information to the 
scattering rate in the electron transport part, our simulation 
model of electron and phonon transport becomes self-
consistent. For this method, we developed two simulation 
procedures. 

A. Algorithm for Local Temperature Distribution 
We made a program to estimate the local temperature from 

a phonon spatial distribution, where we used a Bose-Einstein 
distribution function, the phonon density of states, and the 
phonon generation rate, which were obtained by Monte Carlo 
simulations. First, we calculate the Bose-Einstein distribution 
function for the temperature, T1. By multiplying it by the 
phonon density of the states of the channel material, we can 
obtain the energy distribution of phonons at time t1. Next, we 
implement a Monte Carlo particle simulation to obtain the 
numbers and locations of phonon scattering events in the 
channel during a time increment of Δt. By adding the generated 
phonons to the original one, we can obtain the revised phonon 
distribution at time t2 (= t + Δt), where we assumed that the 
energy of phonons generated during Δt will be uniformly 
dispersed in the whole range of the acoustic phonon energy on 
the basis of the initial phonon energy distribution function (as 
shown in Fig. 2). Then, we obtain the revised Bose-Einstein 
distribution by dividing the revised phonon distribution by the 
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density of states. Finally, the local temperatu
determined. From this procedure, we establis
equations that enable us to estimate the local 
channel from the phonon spatial distribution a

 

 

    

Fig. 1 Algorithm of Quasi Self-consistent Mont
electron and phonon transport 
  

Fig. 2 Schematic of method for estimating local tem
population 
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C  Two-dimensional FET Model 

Figure 4 shows a two-dimensional model 
high electron mobility transistor (HEMT). T
0.1 μm. The channel n-layer is sandwich
source and drain n+ layers. We assumed 
motions and phonon generations were limite
layers. We will discuss the comparison betw
phonon motion model and real space phonon

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4   Two-dimensional AlGaN/GaN HEM
 
 

III. RESULTS AND DISCUSS
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Fig. 5 Distributions of electric fie
of 100-nm-gate GaN FET simulated w
applying voltage Vds of 50 V) 
  

 
Fig. 6 Temperature distributions 
simulated with quasi-self-consistent 
applying voltage Vds of 50 V) 
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IV. CONCLUSION 
In conclusion, we developed two kin

procedures for the Monte Carlo method
possible to realize quasi self-consistent simu
and phonon transport in nano-scale devices 
 

Fig. 7 Temperature distributions in channel of 100
simulated with quasi-self-consistent MC simulation me
phonon transfer model (at 50 μs after applying voltage V
  

nds of simulation 
, which make it 
ulation of electron 
with a reasonable 

amount of computing time. Us
the local self-heating phenomen
confirmed that phonon genera
highly doped and low electric f
the high field regions of the ch
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