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Abstract— A globally hyperbolic high-order moment method
of the Boltzmann transport equation (BTE) is proposed in [1],
[2], and here it is extended for the BTE with the electron-
phonon scattering term to simulate a silicon nano-wire (SNW).
Convergence with respect to the order of the moment system and
the characteristics of SNW including the I-V curve are studied.

I. INTRODUCTION

The drift-diffusion (DD) derived from the BTE was the
most popular tool in semiconductor simulation for a long
time. As devices are scaling down to submicrometer, it fails
in capturing the nonlocal and hot carrier effects. To overcome
the limitation of the DD model, many high-order transport
models are derived by closing the moment system via an
Ansatz of the form of the distribution function. However,
those closure relations are highly dependent on the model, so
unfortunately, these closed moment methods have performed
failure in different degrees [3]. Recently, a globally hyperbolic
regularization is proposed in [1], [2]. Its most appealing feature
is that the closure is done by fulfilling the hyperbolicity of the
regularized moment system instead of a guess of Ansatz of the
distribution function. Furthermore, the characteristic speeds of
the regularized moment system can be analytically given and
only depend on the macroscopic velocity and the temperature.
The regularized moment system up to any order can be
obtained systematically by the globally hyperbolic closure
without calibrating any parameter. Additionally, it has been
successfully developed in [4], [5] to validate the robustness of
this method in simulating microflows, etc. In this paper, this
method is applied to simulate a n+-n-n+ silicon nano-wire
modeled by the electron-phonon scattering involved BTE. The
convergence of the macroscopic quantities with respect to the
order of the moment system can be observed obviously and
some I-V curves are simulated at some orders.

II. METHODOLOGY

Electron transportation in a SNW is simulated with the
semiclassical BTE
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where the potential energy V (x) is calculated by the Poisson
equation(PE). Both the acoustical-phonon scattering and the
optical-phonon scattering are included. Following the method
proposed in [6], [7], we expand the distribution function

f(t, x, v) into a M -order truncated series of the Hermite
functions. The Hermite function Hα(u(t, x), T (t, x)) for α =
0, 1, · · · ,M defined as
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is used as the basis function of the M -term expansion approx-
imating f(t, x, v) in the form of
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It is noted that the expansion (4) takes the mean veloc-
ity u(t, x) as the shifting and the local scaled temperature
T (t, x) as the scaling, with the expansion coefficients fα, α =
0, · · · ,M .

As proposed in [1], a 1-D hyperbolically regularized quasi-
linear moment system is obtained by substituting ∂fM+1/∂x
in the last moment equation of the corresponding M -th
moment system with the linear combination of fM−1 and fM ,
which is given as
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The regularized quasi-linear moment system for collision-
less BTE truncated up to M reads
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Specifically,

f0 = ρ, f1 = f2 = 0, P = ρT , q = 3f3. (7)

As an example, the equations composing the regularized
moment system corresponding to M = 3 is
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The closure results for the collisionless BTE in a globally
hyperbolic M -th order regularized moment system (6) can be
organized into
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where w = (ρ, u, P/2, f3, · · · fM )T and M, G corresponding
to (8)-(11) are
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respectively. The characteristic velocities of (12) can be given
exactly as sj = u + cj

√
T , j = 1, 2, · · · ,M + 1, where

cj is the j-th root of HM+1(x). In the moment framework,
the scattering integral involving both the acoustical part and
optical electron-phonon part are to be expressed into product
of a scattering matrix Gscat and the expansion coefficient
vector F = (f0, f1, · · · , fM )T , which lead to a moment
system for the scattering by

∂F
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Gscat = Gac+Gop, in which Gac and Gop are the scattering
matrices for the acoustic part and optical part respectively.
Precisely, for the acoustic electron-phonon scattering
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where F (α, β; γ; z) is the Gauss hypergeometric function. For
the optical electron-phonon scattering
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where TL is the lattice temperature and
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As can be seen, all the elements of the scattering matrix
Gscat are analytically expressed with the special functions,
precisely, the Gamma function Γ(x), the Gauss hypergeomet-
ric function F (α, β, γ; z) and the confluent hypergeometric
function U(a, b, z). Specifically, all of the elements of the
first row of Gscat are zeros, which implies mass conservation
is guaranteed during each collision. We have adopted the
numerical method proposed in [5], [7] which is a unified
numerical method for the moment system of arbitrary order. A
time splitting method is used for the moment system derived
from the BTE. The convection part is discretized by the finite
volume method(FVM) with a HLL scheme for calculating the
numerical flux, and the remaining scattering part is solved by
the backward Euler scheme.

III. RESULTS

Simulation of a 100-50-100(nm)’s n+-n-n+ SNW is carried
out. The doping density of the Source/Drain region and the
channel region are 5× 1017cm−3 and 2× 1015cm−3, respec-
tively. The lattice temperature is fixed at 300K throughout the
simulation process. A uniform mesh with a 0.5nm spacing is
used in the x direction. Our simulations were performed for
applied biases Vbias from 0V to 2.0V, but for the space saving,
we only show I-V curves computed in the bias range [0, 1.0]V.
As is mentioned in [7], The numerical method designed for
this globally hyperbolic moment method has the absolute
predominance in CPU efficiency because the computation cost
of this numerical method is only O(M/h), where h is the
partition of the x-direction.
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Fig. 1. The densities of the electron obtained at M = 3, 6, 9, 12, 15
respectively, where the cross points of the vertical dash line and the density
curves are involved in the calculation of the relative errors.
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Fig. 2. the mean velocities of the electron obtained at m = 3, 6, 9, 12, 15
respectively, where the cross points of the vertical dash line and the mean
velocity curves are involved in the calculation of the relative errors.

The convergence of all the macroscopic quantities with
respect to the increase order of the moment system are plotted
in Fig. 1, Fig. 2 and Fig. 3. The reference solutions for all
the macroscopic quantities discussed in this paper are the
numerical results calculated when M = 15. Apparently, with
the increase of the number of the moments, the corresponding
curves for all of the macroscopic quantities, densities, mean
velocities and mean temperatures precisely, are getting close
to the reference solutions.

The relative errors of all the macroscopic quantities at
different observation points are plotted together in Fig: 4, in
which M ∈ [3, 10], Vbias = 1.8V. As expected, all of the
macroscopic quantities considered in this paper are obviously
convergent with the increase of the number of moments, and
even present linear convergence rates.

As the most important characteristic curve of all semi-
conductor devices, I-V curves simulated when M = 3 and
M = 6 are plotted in Fig. 5, and the significantly decrease in
the current when increasing the bias shows the feasibility of
our method. We show some curves of the mean velocity with
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Fig. 3. The local temperatures of the electron obtained at M = 3, 6, 9, 12, 15
respectively, where the cross points of the vertical dash line and the local
temperature curves are involved in the calculation of the relative errors.
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Fig. 4. The relative errors of electron’s densities, mean velocities and local
temperatures on the cross grids of the dash lines and the x-axis corresponding
to Fig: 1, Fig: 2 and Fig: 3, respectively. The relative errors of average currents
with respect to the moment order are plotted in the lower right subfig. The
order set considered is M ∈ [3, 10] and the reference is takes at M = 15.
Vbias = 1.8V is fixed throughout the whole calculation.
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Fig. 5. I-V curves of M = 3 and M = 6 with the bias set is selected as
[0, 1.0]V.
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Fig. 6. The curves of mean velocities obtained when increasing biases applied
with M = 6.

increasing biases in Fig. 6, in which M is fixed at 6. The mean
velocity of electron obviously increases with the increase of
the biases, which shows the rationality of our simulation.

IV. CONCLUSIONS

Globally hyperbolic moment systems of arbitrary order
are systematically derived from the BTE including phonon-
electron scattering. It is applied to simulate a 1-D SNW.
Due to the globally hyperbolic regularization, the yielded
moment system is well-posed. The convergence with respect
to the order of the moment system is observed. Reasonable
characteristics including I-V curves are obtained. The globally
hyperbolic moment systems seem to be regarded as a series
of high-order moment models as a good extension of the DD
model.
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