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Abstract— In this paper, we have developed a full Quantum 
Device Simulator by solving the Wigner equation in the mode 
space for a cylindrical nanowire MOSFET. A novel and efficient 
numerical technique to solve the Wigner equation has been 
developed. It’s comparison with the LU decomposition method 
shows that significant improvement in the simulation time is 
obtained. Comparison of the results obtained from the Wigner 
equation and Quantum Drift Diffusion method suggests that later 
can be continued to be used after suitable adjustments to the 
mobility and effective masses (across the transport). Timing 
comparison of the Wigner equation and QDD formalism 
indicates that the later is more than 200 times faster than the 
Wigner equation.      
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I.  INTRODUCTION  
     The architecture of sub-22nm MOSFETs is evolving 
towards thin-body multiple-gate structures that offer superior 
gate control at these ultra-short channel lengths. The limit of 
this would be the gate-all-around nanowire transistor. In order 
to accurately predict the device performance in these devices it 
is necessary to take into account quantum effects along (Z) 
and across (X-Y/R-Θ) the transport direction. Different 
formalisms like Non-Equilibrium Green Function, Wigner 
function, Path-integral, Quantum Hydrodynamic and so forth 
have been developed to this end. All of them expectedly 
increase the computational load for device simulation as 
compared to standard drift diffusion.  
     In this work we present, firstly, a novel efficient scheme for 
the implementation of the Wigner equation along Z coupled 
with a Schrodinger solver in R-Θ, and Poisson for 
electrostatics. Secondly, we show that for situations where 
there are no overt quantum effects along the channel, much 
faster quantum drift-diffusion (QDD) simulations [1] but with 
generalized Einstein’s relationship, can reproduce the results 
of the Wigner equation after some calibration. The interest in 
continuing to use QDD has been motivated by time needed to 
perform simulations.  

II. FORMALISM 
     In this work, we solve the Schrodinger equation across the 
transport direction along with the Poisson equation throughout 

the device. Solving the Schrodinger equation allows us to 
work in the modes space which reduces the dimensionality of 
the transport equation to 1D. The transport equations are then 
solved in each sub-band (i.e. for each mode) and the carrier 
and current densities are added up (Uncoupled Mode Space 
Approach).  The Poisson and Schrodinger equation under the 
cylindrical nanowire are given below (eq 1 and 2 
respectively). Eq. 3, 4 and 5 are the Wigner and carrier 
continuity equation and drift-diffusion equations .   
  

 

 

 

  

 

 

where V is the electrostatic potential, and  are the 
effective masses along R and Θ directions,  is the wave 
function,  is the sub-band energy,   is the order of the 
Bessel function, mz is the effective mass along the transport 
direction, k is wave vector, (m-1) is the electron 
concentration in a particular sub-band energy and  (m-3) is the 
total electron density.  The 1D electron density obtained from 
the transport equation is converted into the 3D electron density 
(used in the Poisson equation) using the relationship 

  

III. DISCRETIZATION AND SIMULATION 
All the differential equations were converted to difference 

equation using the finite difference method. Scharfetter- 
Gummel discretization scheme was used for carrier continuity.   
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The discretization of the Wigner equation was done using the 
equispace meshing in both the real and reciprocal (k) space. 
First of all a suitable spacing in the real space was 
assumed, and the number real space mesh points along the 
transport length( ) was calculated using ( ). The 

meshing in the reciprocal space was calculated using 
 where j varies from 1 to Nk. The discretiztion 

of the derivative ( ) in the diffusion term in the Wigner 

equation was done using the 3rd order upwind scheme as it 
offer better accuracy as shown in the Ref[2].  

 

 

 

 

 

 

 
 

 

 

where the argument ‘k’ has been suppressed in the above 
equations for clarity purpose. The discretization of the drift 
term is given by  

 

where  is the discretized non-local potential given 
by 

 

The scattering was taken into account using the relaxation time 
approximation which in the discretized form is given by 

 

where  is the relaxation time and feq is the equilibrium Wigner 
distribution. Equation for current calculation for the 3rd order 
upwind scheme such carrier continuity is also satisfied is given 
by  
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Fig.3: (a)Benchmarking of the QDD implementation with ref. 

data[5].(b) Benchmarking of the Wigner implementation with ref. 

data[6] 

Fig.1 Flowchart for 1 bias point 

Fig.2: (a) Schematic of nanwire MOSFET (tOX=0.5nm)(b) after
using the angular symmetry (c) half-plane fundamental domain
used for simulation 
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where      

     Combining the discretized equation together results in 
equation of the form 

 

where [ b] is the column vector resulting from the boundary 
condtions, [fw] is the Wigner function inside the simulation 
domain and [A] is the block penta-diagonal matrix of 
dimension NzNk x NzNk.  

     For the Wigner equation it was assumed that only the 
incoming electrons from the source and drain obey Fermi-
Dirac statistics as suggested by Frensley [3]. The boundary 
conditions used for the Schrodinger equation, Poisson equation 
and carrier continuity are same as used in the Ref. 1. In this 
work we have used the Generalized Einstein’s relationship for 
1D system [4] 

 

Fig. 1 shows the flowchart for the simulation at one bias 
point. Gummel iterative scheme was used for solving the 
equations. In order to increase the efficiency of the code we 
have used Fast Uncoupled Mode Space Approach (FUMS). In 
this technique sub-band energies are calculated by solving the 

 

 

 
 

 

Schrodinger equation only ones and with the average (along 
the Z) potential and then using 1st order stationary perturbation 
theory[5]. The Poisson (for QDD) and carrier continuity 
equations were solved using the LU decomposition technique. 
In order to solve the system of equations for the Wigner 
equation we propose to use the Thomas algorithm for the block  
penta-diagonal matrix rather than applying LU decomposition 
on the entire sparse matrix, [A]. In addition to the reduction in 
time for simulation, memory needed to store the matrix would 
also be reduced. However, a disadvantage of this method is that 
partial pivoting can be done only on the block matrices rather 
than the complete matrix. The Poisson equation for the Wigner 
equation case was solved using the Newton’s method.        

     Fig. 2 shows the schematic of a nanowire transistor. By 
exploiting the angular and inversion symmetries of the 
cylindrical nanowire it reduces to Fig. 2(c), the actual 
simulation domain. The source and drain doping in the 
nanowire MOSFET were assumed to be 5e19 cm-3 and intrinsic 
channel. Fig 3a shows verification of the QDD code with the 
reference data [5]. In this case, we have used Einstein’s 
relationship ( ) as mentioned in the reference. For the 
purpose of verification (Fig. 3b) of the Wigner equation 
implementation we have used the data from Ref [6]. It is shown  

Fig.4: Cartography of the Wigner function in phase space (a) VG=-
0.1V (off-state) and (b) VG=0.1V (on-state) and VDD=0.5V,
LG=5nm. Note the increased interference between left and right
moving states during increased electron flow in the on-state.  

Fig.5: Comparison of ID-VG between QDD and Wigner
equation.VDD = 0.5V. 

Fig.6: 1D electron density obtained by Wigner equation and
QDD. VDD= 0.5V 
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in [7] that for extremely scaled geometries, electron density is 
same irrespective of whether the cross-section is circular or 
square. For the purpose of simulation only one sub-band as the 
contribution to the electron density and hence the current from 
the higher sub-bands is negligible [1]. ms=0 was assumed in 
all the simulations and thus leading to depletion mode devices. 

Relaxation time ( ) was calculated using the relationship 
μ=q /mz and a constant mobility (μ) of 500 cm2/V-sec was 
assumed.   

IV. NUMERICAL RESULTS 
 Fig. 4 shows the cartography of the Wigner function under 

ON and OFF state. Interference between the electrons 
travelling from right to left and from left to right can be seen 
during the ON state. Fig 5 shows transfer characteristics 
obtained for different values of channel lengths. It can be seen 
that for LG=9nm an excellent agreement in the subthreshold 
region was ontained indicating negligible source-drain 
tunneling. It is can also be seen that the mismatch between the 
characteristics increases with the increase in VG. This trend 
can be captured using a suitable VG dependent mobility model. 
Fig. 6 indicates that electron density obtained from the Wigner 
equation is more than that obtained from the QDD formalism. 
This be matched using and  as fitting parameters.  Time 
needed for one bias point simulation using the Thomas 
algorithm for block penta-diagonal matrix and a straight 
forward LU decomposition on the sparse matrix is shown in 
the Fig. 7 for different values of channel length (NZ) and Nk. It 
can be seen that an improvement of about 25-40%  is obtained 
using the new method. Fig. 8 shows that QDD is more than 
200 times faster than the Wigner equation .         

V. CONCLUSION   
   In summary, we have developed a novel technique to solve 
the Wigner equation that is much faster than the conventional 
methods. A comparison of the Wigner and QDD for nanowire 
transistors suggests that suitably calibrated QDD can continue 
to be a handy design tool for these devices until quantum 
effects along the channel become significant through extreme 
length-scaling or the use of hetero-structures.  
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Fig.7: Comparison of time taken for one bias point simulation
for different (a) Nl (channel lengths) and (b) Nk. 

Fig. 8: Comparison of time/iteration for Wigner equation (solved
with Thomas algorithm) and QDD 

275




