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Abstract—Frequency dispersion and damping mechanisms of
two-dimensional plasmons in graphene in the terahert (THz)
range are studied by a numerical simulation based on the
Boltzmann equation. The fundamental plasmon mode in a single-
grating-gate structure is studied, and the coupling effect of
plasmons in the gated and ungated regions are revealed. It is
shown that the plasmon frequency as well as its gate-voltage
tunability depend strongly on the coupling. It is also demonstrated
that damping rates due to the acoustic-phonon scattering at room
temperature and short- and finite-range disorder scattering can
be on the order of 1011 s−1, depending on the level of disorders.

I. INTRODUCTION

Graphene, a two-dimensional material made of carbon
atoms, has been extensively researched due to its exceptional
electronic and optical properties. Especially, it is very promis-
ing as a channel material of THz plasmonic devices which
can surpass those based standard compound semiconductor
heterostructures investigated for decades [1], [2].

One of the most important advantages of plasmons in
graphene over those in heterostructure two-dimensional elec-
tron gases is a weaker damping rate close to 1011 s−1 at
room temperature in disorder-free graphene limited only by the
acoustic-phonon scattering. Such a weak damping rate enables
the realization of resonant THz detection and also of THz
emission through the occurence of plasma instabilities, both at
room temperature. In addition, interband population inversion
in graphene in the THz range was predicted [3] and has been
investigated for the utilization not only to THz lasers in the
usual sense but also to THz active plasmonic devices [4], [5].

Previously, we have obtained the analytical expression
of the frequency dispersion of plasmons in gated graphene
based on the Boltzmann equation [6] and the hydrodynamic
equations [7], and we have revealed that the plasma frequency
can be in the THz range and can be widely tunable by the gate
voltage. The damping due to the acoustic-phonon scattering
and electron-hole friction has also been discussed [7]. In this
paper, we develop a numerical model for the simulation of
plasmons in more complex graphene structures, based on the
Boltzmann equation for electron and hole transport coupled
with the self-consistent Poisson equation. We consider a single-
grating-gate structure with periodic boundaries and investigate
the voltage tunability of the plasma frequency. We also study
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the damping due to the acoustic-phonon scattering and due to
the short- and finite-range disorder scattering.

II. NUMERICAL MODEL

Here, we consider a single-grating-gate structure which
consists of a graphene channel with period length L, insulating
substrate, dielectric layer with thickness Wg, gate with length
Lg, and passivation layer above the gate (Fig. 1), with periodic
boundary conditions. We use the quasi-classical Boltzmann
equation to describe the electron and hole transport:

∂fr
∂t

+ vF

px
|p|
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∂x

+ sreEx
∂fr
∂px

=
∑
i

Ji(fr|p), (1)

where v = 106 m/s is the carrier velocity in graphene, r = e
and r = h for electrons and holes together with se = −1 and
sh = +1, respectively, Ex is the self-consistent electric field in
graphene, and p = (px, py) is the momentum. Here, we take
into account collision integrals for acoustic-phonon scattering,
JLA, short-range disorder (point-defect) scattering, JDS , and
finite-range disorder (inhomogeneity) scattering, JDF , where

Ji(fr|p) =
1

(2πh̄)2

∫
dp′Wi(p

′ − p)[fr(p
′)− fr(p)] (2)

and the explicit expressions of the transition probabilities Wi

can be found in Ref. 8 for the acoustic-phonon scattering and
in Ref. 9 for the others. In this paper, we restrict ourselves to
the situation where the electron concentration is much larger
than the hole concentration, so that coupled modes of electron
and hole plasmas and their damping caused by the electron-
hole friction predicted in Ref. 7 can be neglected. Equation (1)

Fig. 1. Schematic view of the single-grating-gate structure.
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is accompanied with the self-consistent Poisson equation

∇ · (ε∇ϕ) = 4πe(Σe − Σh − Σd)δ(z) (3)

where ϕ is the electric potential, ε is the dielectric constant,
Σr =

∫
dpfr/π

2h̄2 is the carrier concentration, and Σd is the
doping concentration. The doping can be by the unintentional
doping from the substrate and contacts and/or by the controlled
remote doping from the dielectric layer. For simplicity we set
ε = 4. The boundary conditions for Eqs. (1) and (3) are peri-
odic, i.e., fr|x=−L/2 = fr|x=L/2 and ϕ|x=−L/2 = ϕ|x=L/2. In
addition, natural boundary conditions are set for the potential
at |z| → ∞. We adapt the so-called weighted essentially
nonoscillatory finite-difference scheme [10] for solving Eq. (1).
Equation (3) is solved using a software library libMesh [11],
which is based on the finite-element method.

The simulation is divided into two parts. First, we find
a self-consistent steady-state distribution function accounting
for the gate voltage and the doping by conducting a transient
simulation based on Eqs. (1) and (3) until the steady state is
reached. Second, we add to the steady-state concentration a
small artificial perturbation with sinusoidal variation in posi-
tion (more precisely, δΣ ∝ cos(2πx/L)), simulate the plasma
oscillation both in time and space, and extract the frequency
and damping rate from the oscillation of the concentration. For
the distinct analysis of the dispersion relation and the damping
of plasmons, we shall study the former in the gated structure
without any collision integrals and, hence, with no damping,
while we shall study the latter in the ungated structure.

III. FREQUENCY OF PLASMONS IN
SINGLE-GRATING-GATE STRUCTURE

Here, we study the dependence of plasmon frequencies
on the gate voltage and gate length. We consider the single-
grating-gate structure with the period length L = 4 μm,
gate-to-channel thickness Wg = 50 nm, and electron doping
concentration Σe = 5 × 1011 cm−2, and we vary the gate
voltage Vg = 0 − 8 V and gate length Lg = 800 − 3200 nm.
The relatively high doping concentration here ensures that the
electron-hole friction can be neglected. Profiles of the steady-
state electron concentrations with different gate voltages and
gate lengths are shown in Fig. 2. It can be seen that the
electron concentration under the gate increases almost linearly
to the voltage, while the concentration in the ungated region
slightly increases due to the gate friging effect. Since an initial
sinusoidal perturbation set at the begining of the simulation
does not correspond to the fundamental mode of this complex
structure, it yields the superposition of higher harmonics. We
can extract the fundamental mode from it by performing the
time-domain Fourier transform.

Figures 3 and 4 show the gate-voltage dependence of
frequencies of the fundamental symmetric modes with different
gate lengths and their mode profiles, respectively. It is clearly
illustrated from Fig. 3 that the fundamental plasmon frequency
of the structure is in the THz range, and that it can be tuned by
the gate voltage. The frequency tunability becomes narrower
with the shorter gate length. Also, there is a nontrivial feature
of the dependence on the gate length when the gate voltage is
fixed; there is a maximum frequency at a certain value of the
gate length. These features can be explained qualitatively by
the coupling of gated and ungated plasmons.
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Fig. 2. Profiles of steady-state electron concentrations with different gate
voltages Vg and different gate lengths Lg .
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Fig. 3. Gate-voltage dependence of frequencies of the fundamental symmetric
modes with different gate lengths Lg .
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Fig. 4. Profiles of the fundamental symmetric modes with gate voltage (a)
Vg = 0 V and (b) Vg = 4 V, and with different gate lengths Lg (curves
with circles, diamonds, triangles, and crosses for Lg = 0.8, 1.6, 2.4, and 3.2
μm, respectively). Each curve is shifted vertically by −1, and thin solid lines
correspond to δΣe = 0 for each curve.
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Fig. 5. Comparison of the gate-voltage dependence of frequencies for the
single-grating-gate (solid curves) and fully-gated structures (dashed curves),
with different gate lengths Lg (curves with circles, diamonds, triangles, and
crosses for Lg = 0.8, 1.6, 2.4, and 3.2 μm, respectively).

Indivisually, frequencies of gated and ungated plasmons
are proportional to k and

√
k, respectively, where k is the

wavenumber [6], meaning that their frequencies become higher
with the shorter length of the channel. Moreover, the frequency
of ungated plasmon is higher than that of gated plasmon
due to the gate screening effect, when the concentration and
wavenumber are identical. Considering these, the gate length
dependence can be explained as follows. First, for Vg = 0
V, the frequency monotonically increases as the gate length
becomes shorter in Fig. 3. With Lg = 3.2 μm (i.e., with
the length of the ungated region 0.8 μm) the frequency of
the ungated plasmon is too high to be fully excited, so that
the dominant oscillation takes place in the gated region, as
illustrated in Fig. 4(a). This means the coupling of the gated
plamon to the ungated plasmon in this case is very weak.
With the shorter gate length, the coupling becomes stronger,
and the amplitude of the oscillation in the ungated region
increases. At the same time, shriking the gate length results
in the frequency increase. The situation changes when the
concentration is increased by the gate voltage, say, by Vg = 4
V; there is a maximum of the frequency with Lg = 1.6 μm.
The coupling becomes strongest with this gate length, and
both gated and ungated plasmons are excited (see Fig. 4(b)).
With Lg > 1.6 μm or Lg < 1.6 μm, either gated or ungated
plasmon is dominantly excited, respectively. This indicates that
the frequency in this structure takes maximum at the crossover
point of the coupling of gated and ungated plasmons.

The frequency tunability depends strongly on the coupling
as well. It is directly related to how dominant the gated
plasmon is. With a long gate length (e.g., Lg = 3.2 μm) the
gated plasmon is dominantly excited, so that the frequency
tunability is effective and is almost comparable to that of
a fully-gated structure, where the entire channel is covered
by a gate (see Fig. 5). A small decrease in the frequency
compared with the fully-gated structure is due to the weak but
nonnegligible coupling to the ungated plasmon. On the other
hand, with a short gate length (e.g., Lg = 0.8 μm) the coupling
is strong, and the frequency is primarily determined by the
ungated plasmon. This results in a poor frequency tunability
as well as a huge decrease in the frequency compared with the
fully-gated structure, as shown in Fig. 5.

These results indicate a great impact of the coupling of
gated and ungated plasmons on the device design, especially,
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Fig. 6. Dependences of the damping rates due to the accoustic-phonon
scattering at room temperature (a solid curve with circles), to the short-
range disorder scattering (dashed curves with squares) with different defect
concentrations nDS , and to the finite-range disorder scattering (dashed-dotted
curves with triangles) with different correlation length lDF .

on the determination of the operating frequency as well as its
tunability by the gate voltage.

IV. DAMPING BY CARRIER SCATTERING

Next, we discuss about the damping of plasmons by carrier
scattering with acoustic phonons and short- and finite-range
disorders. Here, we considered an ungated periodic structure
with the uniform doping concentration Σd. The presence
of the gate does not affect the acoustic-phonon scattering,
whereas it may affect the finite-range disorder scattering
because the screening of the interaction potential by carriers
is suppressed [12] and, specifically, the damping rate might
increase. However, the latter effect is expected to be not
significant in case of structures with Wg ≥ 50 nm and with
the correlation length of the finite-range disorder lDF ≤ 100
nm which we shall focus on. Furthermore, we included each
scattering mechanism separately to study their characteristics.
The damping rate was extracted by taking the average of
ratios of adjacent maxima and minima of the concentration
oscillation which decays in time.

Figure 6 shows the dependences of the damping rates due
to the acoustic-phonon scattering at room temperature and due
to the short- and finite-range disorder scattering on the electron
concentration. The dependences of the damping rates on the
concentration come from that on the Fermi level and therefore
from the energy-dependent scattering rate. As shown in Fig. 6,
the damping rate of plasmons in disorder-free graphene, which
is limitted only by the acoustic-phonon scattering, can be
down to 1.3 × 1011 s−1 at room temperature, demonstrat-
ing the feasibility of graphene-based plasmonic devices. The
dependence agrees well with the analytical expression of the
damping rate, 1/2τ

ACP
, where τ

ACP
is the acoustic-phonon-

limited momentum relaxation time taken from Ref. 8.

As is evident from the expression of the transition probabil-
ity in Ref. 9, the damping rate due to the short-range disorder
scattering is proportional to nDS . Figure 6 shows that the
defect concentration on the order of 1012 cm−2 is permissible
for graphene-based plasmonic devices. Contrary to the other
two mechanisms, the damping rate due to the finite-range
disorder dramatically decreases as the concentration increases
above 1012 cm−2; even the damping rate can be below 1011
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s−1 with 2× 1012 cm−2 and lDF = 100 nm. This is because
electrons with larger wavenumber k feel the inhomogenuity
less if klDF 
 1. This dependence results in the existence of
a minimum of the total scattering rate at some concentration,
which varies depending on the level of disorders. The damping
rate also decreases as the correlation length lDF increases.
Figure 6 suggests that the length should be longer than the
order of 100 nm to achieve the damping rate comparable to or
less than those for acoustic-phonon and short-range disorder
scattering. The correlation length of this order can be achieved
with samples having high quality comparable to suspended
graphene.

V. CONCLUSION

We developed a numerical model for simulation of plas-
mons in complex gated graphene structures, based on the
Boltzmann equation for electron and hole transport coupled
with the self-consistent Poisson equation. Using the developed
model, the fundamental plasmon mode in the sigle-grating-gate
structures was studied. It was revealed that the frequency and
its gate-voltage tunability depend strongly on the lengths of
gated and ungated regions in the channel through the depen-
dence of the coupling of plasmons in these region, indicating
its great impact on the device design. The damping caused
by carrier scattering was also studied. It was demonstrated
that the damping rates due to the acoustic-phonon scattering
at room temperature and due to the short-range (point-defect)
and finite-range (inhomogeneity) disorder scattering can be on
the order of 1011 s−1, depending on the level of disorders and
on the electron concentration.
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