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Abstract— Influence of an acceptor impurity atom in the 
channel of p-type silicon nanowire in [100], [110] and [111] 
crystal orientations has been studied using a    three-dimensional 
non-equilibrium Green’s function formalism. The valence band 
has been modeled using a 6-band k.p Hamiltonian. At low gate 
bias, the drain current differs from homogenous channel due to 
resonance levels and screening of carries in the channel by 
ionized impurities, whereas at high gate bias, the drain current 
is dominated by the thermionic current. It is also shown that the 
impurity induced density of stated are profound in low energy 
subbands. 

I. INTRODUCTION  
Despite numerous studies on quantum transport in n-type 

silicon nanowire FET in the past few years, hole transport in 
p-type silicon nanowire has been neglected due to the complex 
nature of  valence bandstructure of silicon [1,2].   However, a 
recently developed theoretical approach based on the k.p 
description of valence bands and NEGF formalism has   
enabled modeling of the hole transport with high accuracy that 
is comparable to the tight-binding (TB) method with 
reasonable computational cost. Most of these studies have 
been limited to optimizing k.p parameters and comparing 
results with TB Hamiltonian [2-7]. Here, we show that 
solutions of the k.p Hamiltonian in mode-space can be 
effectively used to model valence band and scattering in the 
presence of ionized impurity atom in silicon   nanowire FETs.  

II. SIMULATION PROCEDURE 
A.  K.p theory 

In order to model the hole transport in p-type silicon         
nanowire, we have followed the simulation approach outlined 
in [3,6]. The 6×6 k.p Hamiltonian for [100] crystal orientation 
can be written as [6]: 
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is the Kane’s 3×3 interaction matrix that contains the three 
parameters L = ћ (−γ1 − 4γ2) / 2m0 , M = ћ (−γ1 + 2γ2) / 2m0 
and N = −6ћ γ3/ 2m0 , where γ1 , γ2 and γ3 are the Lüttinger 
parameters, ΔSO is the split-off parameter, and A and B are 
spin-orbit (SO) coupling matrices. Turning off the SO 
interaction, the second matrix in (1) will become zero and the 
total Hamiltonian is reduced to Hk.p=H3×3 with double 
degeneracy. In order to obtain Hk.p for nanowire along [110] 
and [111] direction, one needs to rotate the Hk.p and K vector 
using rotation matrix. The coordinate transformation matrix Ū 
is defined as [10, 11]: 
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where θ and φ are are the polar and azimuthal angles of the    
z-axis in the crystallographic coordinate system. Having built 
the transformation matrix for a desired crystal orientation, we 
can obtain the Hamiltonain and K vector in a new coordinate 
system as follows:  
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Fig. 1. Band structure of 5×5 nm2 Si nanowire in [100], [110] and [111] crystal orientations with tuned lüttinger parameters and SO interactions turned off. 

for nanowire oriented in [110] direction, θ=90 and φ=45 and 
for [111] we have tan-1θ= √2 and φ=-45, rspectively. Fig. 1 
shows the bandstructure for different crystal orientations by 
applying rotation matrix t0 [100] Hamiltonian. For numerical 
calculations, we first discretize the Hamiltonian of Eq. (1) in 
the real space by substituting kv=-i∂/∂v , where v=x, y, z. We 
then transform the discretized real-space Hamiltonian HR to k-
space Hamiltonian using the following relation [3]: 

KRKK UHUH                              (3) 
where unitary matrix UK is a block diagonal matrix and its 
diagonal blocks represents the two-dimensional sine 
transformation. The Hamiltonian in k-space can be further 
transformed to the mode-space via: 

MKMM UHUH                              (4) 
where UM is the transformation matrix which is constructed as 
follows. The “mode” wavefunction ψm is defined as the 
wavefunction at k=0 of the E-k diagram, where 1≤m≤Nm and 
Nm is the number of the modes as shown in Fig. 2. We can 
then construct the unitary matrix U0 which consists of ψm  as 
its column vectors: 

mU 210                         (5) 
for the i-th nanowire cross-section, UM is calculated as 
follows: 

iM UUiU 0)(                                   (6) 
where Ui is the matrix which diagonalizes the following 
matrix: 

000 UVUh ii                               (7) 
 
where ε0 is the energies at k=0 of the E-k diagram and Vi is the 
k-space, two dimensional potential profile of the i-th cross-
section and is computed as follows: 

KRKK UiVUiV )()(                        (8) 
where VR(i) is the discretized real-space two-dimensional 
potential profile at i-th cross-section of the nanowire. 
The transformed Hamiltonian in mode-space automatically 
considered the mode-coupling and hence it can be applied to 
nanowire with surface roughness where we have strong mode 
coupling. 

Through successive transformation from real-space as 
outlined above, the effective size of Hamiltonian can be 
reduced considerably in mode-space. In this work we have 
considered a nanowire with 5×5 nm2 cross-section, 10 nm 
channel length, source/drain extension of 10 nm and 1nm 

oxide thickness. For numerical simulations Ny=Nz=50, Nx=200 
and Nb=3 where Ny,Nz and Nx are finite difference spacing in y, 
z,  x direction and Nb is the number of bands in k.p 
Hamiltonian. The finite difference method (FDM) 
discretization results in real-space Hamiltonian whose block 
diagonal elements are of size Ny×Nz×Nb or 7500 which is too 
big for numerical simulation. This can be reduced to 600 and 
200 for k-space and mode-space Hamiltonian.  
  
B. NEGF simulation details  

Having built the mode-space Hamiltonian by the strategy 
outlined above, we can employ the non-equilibrium Green’s 
function (NEGF) formalism to compute charge and current 
density in the nanowire. NEGF approach is a well-established 
standard method to perform quantum transport in 
nanostructures [8]. The real-space hole density is obtained by: 

RMR UUr)(                               (9) 

where UR=UKUM is the matrix which transforms back the 
mode-space charge density to real-space charge density. 
Mode-space charge density is computed by: 
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where fs(d) is the Fermi function at source (s) and drain (d) and 
Γs(d) is the broadening function which is defined as: 

)()()( dsdsds i                         (11) 

where Σs(d) is the self-energy matrix at source/drain which can 
be computed by iterative methods such as Sancho-Robio 
algorithm or by boundary matrix eigenvalue problem[9-11]. 
Having solved the NEGF equations, calculated hole density is 
fed into the three-dimensional Poisson solver to update the 
potential profile as follows: 
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where φk and ρk are the k-th self-consistent step solutions for 
potential and hole density. The 3D Poisson’s equation has 
been solved by COMSOL® multyphyics solver which 
employs finite element method and energy integration in    
Equ. 2 has been computed by adoptive integration method.   
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Fig. 2. Mode selection at k=0 in [100] Si nanowire. 

 
Fig. 3.  IDS-VGS characteristic for different crystal orientations. Nanowire in 
[111] has the highest current density. 

 

III. SIMULATION RESULTS 
We have considered a nanowire in [100], [110] and [111]         

orientations with LS=LD=Lch=10 nm and Tox=1 nm. The 
channel region is intrinsic and source/drain extensions have 
doping density of 1e20 cm-3. The impurity has been included 
by non-pertubative approach in the Poisson’s equation which 
is modelled as a sphere with a radius of 0.2 nm. The charge 
density associated to this impurity can be written as: 
Nimpurity=1/V3, where V is the volume of sphere. The inpurity 
has been put in the middle of the channel and in center of the 
yz-plane prependicular to transport direction. Fig. 3. Shows 
the IDS-VGS curves for different crystal orientations. It is 
evident that [100] direction has the lowest current due to 
highest hole effective mass.   Fig. 4 shows the IDS-VGS curve 
for nanowire with and without impurity. The impurity has 
highest influence on the drain current in subthreshold region. 
Fig. 5 and Fig. 6 show the 1st subband energy and 1D hole 
density along the nanowire in [100] direction for acceptor type 
impurity as a function of VGS. Fig. 7 and Fig. 8 show the 
energy-resolve local density of states and hole density at 
VGS=0.6 for nanowire in [100] direction. Unlike n-type 
nanowire the impurity induced LDOS are located are lower 
energy levels as shown in Fig. 9. Shows the 2D hole density at 
VGS=0.9 V and VGS=0.3 V [2,3].   

IV. CONCLUSION 
We performed self-consistent simulations of impurity   

scattering in the p-type silicon nanowires using a 3-band k.p  
approach for different crystal orientations. We showed that the 
mode-space approach can reproduce results with much less 
computational resources than real-space while retaining the 
accuracy in a reasonable limit. This method can also be used 
to study different sources of variability (random dopant, 
surface roughness, etc.) in p-type silicon nanowire.  
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Fig. 4.  IDS-VGS characteristic for different crystal orientations in the presence 
of impurity atom. The on-current is almost unchanged due to weal influence 
of impurity. 

 

 
Fig. 5.  First subband energy profile for different values of VGS. At high VGS 
values the influence of impurity becomes weaker. 

 

 
Fig. 6.  1D hole density in [100] nanowire. 

 
Fig. 7.  Energy-resolved density of state (LDOS) at VGS=0.5 V for nanowire in 
[100] direction. Impurity induced resonance levels are situated at lower 
subbands. 

 

 
Fig. 8.  Energy-resolved charge density Gn(x,E) at VGS=0.5 V for nanowire in 
[100] direction.  

 

 

 
 

Figure 9.  2D hole density at VGS=0.9 V and VGS=0.3 V. 
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