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Abstract - In this paper, we propose a Kernel PCA (KPCA) based 
light source optimization method for computation of the aerial 
image. The proposed approach is more general in nature and 
considers both continuous as well as discontinuous intensity 
distribution from different types of lithography light sources. We 
have compared both the PCA and KPCA approach, on four 
different light sources (conventional, annular, dipole, and 
quadruple light sources) used in optical lithography. Our 
simulation results clearly indicate that the KPCA performance in 
variance coverage among discrete data sets is better than the 
PCA for all the four types of light sources. Thus using KPCA, we 
can reduce the number of kernels (pixels) for different shapes of 
light sources using lesser number of principal components (PCs) 
compared to the PCA based linear approaches. This will help in 
reducing the computational complexity during the simulation of 
aerial image formation. 

Index Terms - Resolution enhancement techniques, kernel PCA, 
lithography simulation, and source optimization. 
   

I.  INTRODUCTION 

The simulation of aerial image formation is a critical step for 
the development of resolution enhancement techniques 
(RETs) used in optical lithography. These simulations 
consider the effect of light sources, optical lenses, mask and 
the refractive index of the immersion medium and are always 
computationally expensive. For example, the simulation of a 
1cm2 image with a resolution of 1nm requires the computation 
of 1014 image pixels [1].  

The various steps involved in the aerial image formation 
process are shown in the Fig. 1. As can be seen, the very first 
step in the aerial image formation is the use of light source. 
During the aerial image simulation, the light source is 
generally discretized into point sources and the aerial image is 
computed by summing up the contributions from all these 
discrete point sources. Different techniques are generally used 
to select the appropriate number of discrete point sources 
(called kernels) for a given light source. The techniques like 
Abbe’s approach and Hopkin’s theory have already been 
discussed in the literatures for the aerial image simulation. The 
sum of coherent systems solves the Hopkins partially coherent 
imaging equation by using the SVD algorithm [2]. The Abbe-
PCA [1] utilizes the PCA (a method based on the eigenvalue 
decomposition of the source covariance matrix) for optimizing 
the light sources. The PCA assumes that the light intensity 
measured at various points in the field of interest is linearly 
related. However this assumption is not true for the light 
sources used in advanced lithography systems. The 
conventional laser light source has a continuous and normally 
distributed  beam intensity profile [3], in which the light 

intensity at various discrete points are linearly related, whereas 
the other light sources, shown  in Fig. 2, shows the 
discontinuity in their intensity distribution pattern. The 
annular, dipole and quadruple light source's intensity patterns 
are non-linear filtered versions (e.g filtering using a signum 
function like profile) of conventional light source. The SVD 
and PCA techniques are not adequate to capture the 
discontinuous intensity patterns for advanced light sources.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The block diagram of a projection lithography 
system 

Fig. 2. Four different type of light sources generally 
used in advanced lithography systems 
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In this paper, we have used KPCA for optimization of the 
advanced light sources used in current technology nodes. We 
have clearly shown that the KPCA performance in variance 
coverage among discrete data sets is better than the PCA for 
all the four types of light sources shown in Fig. 2 and this new 
approach reduces the computational complexity during aerial 
image simulation. 

II.  PCA AND KERNEL PCA TECHNIQUES 

PCA is the eigenvector based multivariate data analysis 
technique used for the dimensionality reduction of high 
dimensional data sets [4]. It is an orthogonal basis 
transformation technique that extracts the eigenvectors from 
the covariance matrix of original data set with decreasing 
order of their eigenvalues. In essence, PCA explains most of 
the variance in the data using less number of orthogonal 
vectors with the eigenvalues indicating the amount of variance 
captured by that particular eigenvector (eigenvector 
corresponding to larger eigenvalue explains the larger variance 
in the data set).  The eigenvectors, generally smaller than the 
original set of variables, are then used to map the original data 
set. Principal components (PCs) mapping of original data set 
is shown in Fig. 3. 

KPCA is a non-linear form of PCA and it transforms the 
data to a feature space, as shown in Fig. 4 [5]. This feature 
space is basically a higher dimensional space, where the 
observations (data from source) are related linearly and 
therefore PCA can be performed in the feature space. Unlike 
PCA which exploits only the linear relationships in the high 
dimensional data sets, KPCA find the principal components 
for data sets that has nonlinear relationships among its 
variables using appropriate nonlinear mapping ( (x)). One of 
the key feature of KPCA is that the knowledge of nonlinear 
mapping is not essential for computation and only its inner 
product k(x,y) (Kernel)   = (x). (y) is required for obtaining 
the feature space. The inner product can be computed from the 
original data points using the kernel function like Gaussian 
kernel [Eq. (1)] or polynomial kernels [Eq. (2)] which are 
commonly used in KPCA.  
 

 

 
 

     
 

  
 
 
 
The advantages of the KPCA method in lithography source 
optimization are: (i) It accounts for the nonlinear relationship 
present among the various discrete intensity distribution points 
in different light sources, and (ii) the reduction in the number 
of principal components (small number of kernels can explain 
the entire variance present in the whole data set in the 
transformed space) used in the computation of aerial images. 

III. IMAGE RECONSTRUCTION 

For PCA based image reconstruction of the light source 
intensity profiles, it is required to first compute the mean for  n 
dimensional intensity distribution data set            X (n×n 
matrix), which is given by the equation (3).  

 

 
Here, mi is mean value for xi vector ( ith column vector of X).  
Then, the covariance matrix of X and its n eigenvectors are 
shown in the equations (4) and (5) respectively. 
 

 

 
E = [EigVec1    EigVec 2    EigVec 3    ...  EigVec n]n×n             (5) 
 
After that, the principal component vectors are given by, 
 
PC = (zero mean shifted X)n×n * (E)n×n                                  (6) 
 
Now, with first p (  n) principal component vectors and their 
corresponding eigenvectors, the pre-image for light source 
intensity profile  is given by, 
 
XReconstructed  (PC)n×p * [ (E) n×p]T +  [mean(X)] 1×n                (7) 
 
The difference between original intensity profile and 
reconstructed intensity profile depends upon the number of 
eigenvectors involved in the reconstruction process. Exact 

Fig. 3. The principal component mapping using PCA. 
(a) Original data distribution (b) PCA mapping 

Fig. 4. The feature space mapping using Kernel PCA 
(KPCA). 
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original intensity profile can be obtained by including all the 
eigenvectors of the covariance matrix. 

From KPCA intensity profile reconstruction, the exact original 
profile is difficult to obtain and sometimes it is even 
impossible to generate the original intensity distribution points 
[6]. After performing linear PCA in feature space, there can be 
large number of points in the transformed space, whose pre-
image doesn't even exist in the original input space.  

For reconstruction of the pre-image in KPCA, we have to 
consider a projection operator Pn and an approximated pre-
image point z, such that, 

Pn . (x)  (z)                                                                      (8) 

The approximated pre-image can be obtained by minimizing 
the residual, res(z), 
 
res(z) = || (z) -  Pn (x)||2                                                      (9) 
 
For Gaussian kernel function, z, can be approximated as [6]: 
 

 

where  represents kernel range, i depends upon projection 
operator and t is iteration variable. The iterative nature of z  
helps in reducing the residual in equation (9). This iterative 
pre-image reconstruction process is highly dependent on the 
initial value of z and the value of .  

IV. EXPERIMENTAL DETAILS 

Four different light sources (as shown in Fig. 2) have been 
used for the comparative study of PCA and KPCA techniques. 
Each light source is represented by a 128×128 matrix 
dimensions, based on pixel based source representation. 
Standard PCA algorithm is applied to find the covariance 
matrix and the eigenvalues of the covariance matrix. For 
KPCA, Gaussian kernel [5] is used to transform the data into 
higher dimensions. The implementations of the standard PCA 
and KPCA algorithms are done using Matlab. The variance 
coverage from first five principal components (PCs) for all 
four types of light sources is computed using both linear PCA 
and KPCA algorithms. For eigenvalue comparison of PCA 
and KPCA, for different light sources, first 10 eigenvalue 
indices with descending order of eigenvalues are considered. 

 
 
 
 
 
 

 
 
 

 
 

 

          
    
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

IV. RESULTS & DISCUSSIONS 

Fig. 5 shows the pre-image reconstruction results for the 
conventional source with both linear PCA and KPCA, using 
only first principal component. Fig. 6 shows the eigenvalues 
of all four types of light sources with PCA and KPCA 
algorithms. The asymptotic nature of these eigenvalue plots 
represents that first few eigenvalues and their corresponding 
eigenvectors are more significant compared to the other 
eigenvectors. The Table 1 shows the variance coverage results 
from first five principal components of linear PCA and KPCA. 

Type of light 
sources 

 

Cumulative variance coverage with 
principal components ( PC's )  

 ( %) 
PC's PCA Kernel 

PCA 
Conventional PC1 100 99.99 

PC2 100 100 
PC3 100 100 
PC4 100 100 

PC5 100 100 

Annular PC1 48.96 57.23 
PC2 76.92 91.66 
PC3 88.14 98.49 
PC4 91.82 99.54 
PC5 93.72 100 

Dipole PC1 95.17 99.8 
PC2 99.08 99.88 
PC3 100 100 
PC4 100 100 
PC5 100 100 

Quadrupole PC1 59.35 56.85 
PC2 95.73 99.82 
PC3 97.58 99.91 
PC4 99.17 99.99 
PC5 99.61 100

Fig. 5. The reconstructed images of the conventional 
light source (a) PCA reconstructed image (b) KPCA 
reconstructed image 

Fig. 6. The eigenvalue plot for different light sources 
with PCA and KPCA. 

TABLE I – Variance coverage results for 
PCA and KPCA 
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The KPCA variance coverage results show improved 
performance over linear PCA for all the four types of light 
sources. At the same time the KPCA pre-image reconstruction 
results are trailing compared to PCA reconstruction results. 

IV. CONCLUSIONS 

The simulation study of commonly used lithography light 
sources based on PCA and KPCA is presented. We have 
compared the PCA and KPCA approach, on four different 
types of light sources (conventional, annular, dipole, and 
quadruple light sources) used in lithography.  Our simulation 
results clearly indicate that the KPCA performance in variance 
coverage among discrete data sets is better than PCA for all 
the four types of light sources. Thus using KPCA, we can 
reduce the number of kernels (pixels) for different shapes of 
lithography light source using lesser number of principal 
components compared to PCA based linear approaches. 
However, there are unresolved issues with pre-image 
reconstruction in KPCA. We tried to work out the pre-image  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reconstruction for conventional light source only. The iterative 
approach used in KPCA pre-image part, seems to be 
insufficient to reconstruct all the four types of light sources. 
The KPCA reconstruction problem needs to be resolved with 
more generalized approach. 
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