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Abstract—This work focuses on modeling the tunneling mech-
anism in direct semiconductors. An effective barrier is extracted
between the valence and conduction band, by defining the barrier
as valence-like near the valence band and conduction band-
like near the conduction band. The transition occurs at a point
obtained by momentum matching. Computation of transition co-
efficient is performed using the quantum transmitting boundary
method.

I. INTRODUCTION

As CMOS device miniaturization is reaching the limits of
its potential, alternative techniques are being studied to find a
sufficient replacement. Tunneling mechanisms have garnered
significant interest recently since these devices can be designed
to provide steep subthreshold swing, with great potential
for ultra low power switching applications. The tunneling
mechanism is complex and many factors affect the resulting
current, making it a challenge to generate accurate tunneling
models. This work focuses on modeling the one-dimensional
tunneling current in direct semiconductors. Traditionally, the
energy barrier between the valence and conduction bands
is thought of as triangular [1], as shown in Fig. 1(a). This
approach assumes only conduction band properties define the
barrier. This oversimplifies the problem, resulting in a loss
of accuracy. In this work, the energy barrier experienced
by a tunneling particle is obtained from both valence and
conduction bands. A portion of the barrier is obtained from
valence band properties, the other from the conduction band
[2], as explained by Fig. 1(b).

II. THEORY

The current density for tunneling from the valence to the
conduction band is given by [1]
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where v(ky) is the velocity of an electron with tunneling
momentum k, and T'(k,) is the transmission coefficient. The
velocity of an electron is defined by
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and, the total energy in the valence band can be re-written in
terms of its three contributions,
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(a) Tunneling barrier from [1] (b) Tunneling barrier that considers
both band effects
Fig. 1. Tunneling barrier modification and the effect of transition point xq

Eq. 1 is now partially re-written in terms of energy, in place
of momentum,

q
- W/T(EVJ_) fv (E)dEX/koJ_ (4)

By assuming a 2D density of states, the integral over perpen-
dicular wave numbers (k, ) can be re-written as integral over
perpendicular energy (F,) [2],
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Total current combines tunneling from valence to conduction
band as well as from conduction to valence band,

J = Jv~>c - Jc%v; (6)

resulting in the overall tunneling current expression:
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From this expression, we can see that the overall transmission
coefficient, at an energy F, is obtained from an integral of
the transmission coefficient over the perpendicular energy £ .
The tunneling barrier, at a constant energy F, increases due
to the perpendicular energy contribution, ;. This increase
in barrier is demonstrated in Fig. 2. The integration over
perpendicular energies can also be represented by the area
under the TC curve in Fig. 3. As would be expected, the
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Fig. 2. Tunneling barrier extraction from energy band diagram. 2(a), 2(b) and 2(c) consider no perpendicular energy contribution. Tunneling occurs at the
closest point in the energy bands. 2(d), 2(e) and 2(f) show the perpendicular energy contribution.

largest transmission coefficient is obtained when E; = 0,
as this is the narrowest energy barrier of this integration. As
the perpendicular energy is increased, the particle is farther
away from its tunneling destination, and the effective barrier is
widened, decreasing the contribution to the total transmission
coefficient.

A. Parameter Extraction

In order to study the band-to-band tunneling, an energy
barrier between the valence and conduction band is treated
as an effective one dimensional energy barrier, Fig. 2. The
negative effective mass of a particle in the valence band results
in the valence band portion of the energy barrier appearing
under the conduction band portion. Inverting the effective
mass in the valence band, and inverting the energy band,
results in the effective energy barrier from Fig. 2(c) and
Fig. 2(f). The barrier has not been affected by this double
inversion. It simplifies the problem to a one-dimensional
tunneling potential barrier. This barrier is set to exhibit valence
band properties until a transition point, and conduction band
properties after this transition. Recent works have assumed a
mid-way transition with some success [3], while others have
used a momentum matching condition to adjust the location
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Fig. 3. Tunneling probability as a function of perpendicular energy | for

the piece-wise linear band diagram described in Fig. 6

of this transition [2]. In order to satisfy conservation of
momentum, total and perpendicular components of momentum
are matched. From (7), the transmission coefficient (TC) can
be written in terms of total momentum and perpendicular
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Fig. 4. TC calculation through the tunneling barrier using QTBM

momentum. Total momentum from the valence band must
equal the momentum in the conduction band. By matching the
momentum in the valence band (k (z¢)), with the momentum
in the conduction band (k. (z¢)) the transition location (xg)
is obtained,

my (E - Ey (xO)) = Me (Ec (TO) - E) . (8)

Perpendicular momentum of a carrier in the valence band
(ky1) must equal the perpendicular momentum in the con-
duction band, (k¢ )

my By, =mi Ee) . 9)

This condition is employed in order to compute the energy
barrier increase due to the perpendicular component of the
band-to-band tunneling, as shown in Fig. 2(e).

B. TC Calculation

Computation of current requires a computation of the trans-
mission coefficient. Recently, the Wentzel-Kramers-Brillouin
(WKB) approximation has been used for this task [2]. The
analytical WKB method can easily be applied to triangular
barriers. In order to improve accuracy of the TC calculation,
the quantum transmitting boundary method (QTBM) is imple-
mented for this work. QTBM is numerically stable, efficient
and flexible [4]. In this work, we have used this method to
compute the band-to-band tunneling in direct semiconductors.
Our approach allows for a seamless implementation of param-
eter changes between the two energy bands: arbitrary barrier
shape and the effective mass transition. The energy barrier
in the band gap is described as valence band-like until the
transition point and conduction band-like after the transition
point, allowing for a simple barrier to be extracted. In the
QTBM approach, this simply requires a transition of parame-
ters, such as energy in the barrier E'(x) and effective mass m*.
Computation of the transmission coefficient is then performed
by calculating the wave function through the barrier, Fig. 4. ¥
represents the wave function at the entry point to the barrier

and Uy is the final wave state after tunneling,
Uy (z) = Ay (10a)

Uy (z) = AyeFe, (10b)
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Fig. 5.  Effect of considering both valence and conduction components to
the barrier

QTBM computes the transmission coefficient from the wave
amplitudes,
kvmy |Ax|”
_ hma |Ax] (11)
knmy | Ay

In this work, we have implemented a one-dimensional model
based on the QTBM method to compute the inter-band tun-
neling TC, as part of the Vienna Schrodinger Poisson (VSP)
solver framework [5].

III. RESULTS

In order to validate our model, transmission coefficient and
current calculations are performed for a range of conditions.

A. Barrier Change Effects

As shown in Fig. 1, this work implements a modifica-
tion to the barrier between valence and conduction bands
to consider influences of both regions. This allows for the
consideration of effective mass and barrier potential transition
from valence band to conduction band properties. Simple,
single-triangular energy bands are simulated, along with the
presented model, in order to demonstrate the effect of this
energy barrier change. From Fig. 5, a significant difference in
TC can be observed. The single-triangular barrier result shows
a larger transmission coefficient than the double-triangular
barrier. This over-estimation in the single-triangular barrier
approach can be explained by the absence of valence band
parameter consideration. Effective mass of the carrier in the
valence band portion of the barrier is much larger, reducing
the transmission coefficient. This effect is clearly observed in
the double-triangular barrier simulation.

B. InAs Junction

In order to validate our model, TC is computed for a
triangular barrier as well as for a highly doped InAs p-n
junction. The energy bands and resulting TC for the triangular
barrier are shown in Fig. 6. The flexibility of the QTBM im-
plementation allows us to use arbitrary energy band shapes. To
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Fig. 8. Band diagram and the computed transmission coefficient for a
highly doped InAs p-n junction

demonstrate this, TC is computed for a highly doped InAs p-
n junction (Np=N4=3 x 10cm~3). Using a self-consistent
Schrodinger-Poisson loop, we computed the conduction and
valence energy bands. These are then used to obtain the TC,
shown in Fig. 8. The highly doped InAs p-n junction was used
to simulate the tunneling current in Fig. 7. A range of doping
values was studied for the junction in order to examine the
effect of doping on the tunneling current. These results are
shown in Fig. 9.

IV. CONCLUSION

Using the developed model, we are able to simulate trans-
mission coefficients and current for band-to-band tunneling in
direct semiconductors with increased flexibility and improved
accuracy. The single-triangular barrier was shown to overesti-
mate the transmission coefficient, and simplifying the energy
barriers to triangular-shaped results in further computation
inaccuracies. By combining the double-triangular tunneling
barrier and QTBM, we propose an accurate and numerically
stable method to compute band-to-band tunneling current.
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Fig. 9. Tunneling current density for different symmetric (Np = N4)
doping levels of an InAs p-n junction
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