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Abstract—The phonon-assisted band-to-band tunneling
(BTBT) current has been computed for a cylindrical nanowire
tunneling field-effect transistor (TFET) with an all-round
gate covering the source region. Although we have considered
relatively thick wires, i.e. diameters ranging between 5 and 8
nm, we found that BTBT is considerably affected by the carrier
confinement in the radial direction. Therefore, a self-consistent
solution of the Schrödinger and Poisson equations must be
carried out. For the latter, we have implemented a non-linear
variational principle based on the modified local density
approximation taking into account non-parabolic corrections
for both conduction and valence bands. Our findings show not
only that the confinement effects in nanowire TFETs have a
stronger impact on the onset voltage of the tunneling current
in comparison with their planar counterparts but also that the
value of the onset voltage is overestimated when the valence
band nonparabolicity is ignored.

I. INTRODUCTION

Over the last decades, the tunneling field-effect transistor
(TFET), based on band-to-band tunneling (BTBT), has become
a potential candidate to outperform a conventional metal-
oxide-semiconductor field-effect transistor (MOSFET) as it is
expected to improve on the 60 mV/dec sub-threshold slope of
nanometer-sized MOSFETs. Therefore, in the recent past, the
optimization of the TFETs working principle has been the aim
of numerous studies, and various configurations, such as the
reverse-bias p−i−n diode with a gate surrounding the intrinsic
region, [1], [2] have been proposed. Ref. [2] investigates BTBT
occurring in the longitudinal direction, near the p− i junction
where the conduction band (CB) and valence band (VB) start
to overlap.

In this work, however, we have considered relatively thick
Si cylindrical nanowire TFETs having diameters between 5 and
8 nm and an all-round gate covering the p++−doped source
region (see Fig. 1), in analogy with their planar counterparts
[3]. For the latter it was found that, under high gate bias,
a tunnel current emerges due to radial confinement, being
proportional to the gate length and referred to as line tunneling
current. In Ref. [3], carrier confinement was observed to have
a strong impact on the onset voltage of a planar device but,
although confinement is expected to be even more pronounced
in a nanowire, there have been no systematic studies of the con-
finement related onset shift in nanowire TFETs. In this light,
we have thoroughly investigated the effect of confinement in
a p− i− n Si nanowire TFET, first within the effective mass
approximation and afterwards with inclusion of non-parabolic
corrections for the CB [4] and VB [5].

Fig. 1. Cylindrical nanowire TFET with an all-around gate on top of the
source.

In addition, BTBT, mediated by the electron-phonon inter-
action in indirect semiconductors, has been treated according
to the perturbative approach introduced in Ref. [6], which we
have extended to the case of nanowire TFETs. The correspond-
ing transport formalism enabling us to deal with high electric
fields that appear in the one-electron Schrödinger equation for
both the VB and CB, was successfully combined with the
implementation of a non-linear variational principle based on
the modified local density approximation (MLDA) [7], [8].
Applied originally to conventional nanowire MOSFETs [8], the
MLDA has substantially reduced the computational complexity
of the Poisson-Schrödinger solver treating radial confinement.

In section II we summarize the procedure to compute the
carrier concentrations including the non-parabolic corrections
for the CB and VB, within the MLDA-based variational
approach, whereas section III provides the expressions for the
tunneling current and the MLDA-based tunneling probability.
In section IV, we briefly discuss our main results while the
conclusions of this paper are presented in section V.

II. BAND NONPARABOLICITY WITHIN THE FRAMEWORK
OF THE MLDA

For the nanowire TFET shown in Fig. 1, we have assumed a
[100]-oriented perfect cylindrical wire. Adopting the effective
mass approximation, the kinetic energy operator for the elec-
trons in the VB (CB) can be written in cylindrical coordinates
(r, φ, θ) as
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α is a valley index labeling the six conduction band valleys
as well as the light and heavy hole valleys of the VB
whereas mv(c)α⊥ = 2mv(c)αxmv(c)αy /(mv(c)αx + mv(c)αy)
and mv(c)αz respectively denote the effective masses in the
planar cross-section of the wire and the longitudinal mass the
in z-direction. Accordingly, the one-electron Hamiltonian for
the α-th VB can be expressed as [5]

Hvα = T̂vα χα

(− E − eV (r, z)− Eg

)− eV (r, z) (2)

where the function χL(H)(E) models the light (heavy) hole VB
nonparabolicity [5]. On the other hand, we use Kane’s model
in order to incorporate nonparabolicity [4] in the α-th CB,

HcαΨcα(r) =
[
E + γ

(
E + eV (r, z)

)2]
Ψcα(r), (3)

taking the nonparabolicity coefficient γ to be 0.5 eV−1. The
electrostatic potential V (r, z) obeys Poisson equation,

∇2V (r, z) = −1

ε
ρ(r, z), (4)

under the assumption that all carriers are confined to interior
of the wire, i.e. the barrier potential energy at the semiconduc-
tor/oxide interface (r = R) is taken to be infinitely high.

The calculation of the carrier concentration in both the
CB and VB involves the self-consistent solution of the 3D
Schrödinger and Poisson equations which, in principle, can
be obtained by carrying out consecutive iterations of (2)-(4)
until convergence is reached. However, in this work, we have
adopted the MLDA-based variational approach [8] to establish
the charge and potential profiles inside the nanowire TFET.
In particular, we have extended the MLDA-based approach to
properly incorporate the radial confinement that underlies the
line tunneling current. This is accomplished by considering,
as a first step, a potential V1(r) corresponding to an all-
round biased gate which is long enough to neglect the z-
dependence of V (r, z) while the wave functions Rνv(c)(r)e

imφ

and the corresponding subband energies Wνv(c) are computed
within the effective mass approximation. Next, implementing
the strategy adopted by Jin et-al in Ref. [4], we use first-
order perturbation theory to calculate an explicit expression for
the non-parabolic dispersion relations by inserting the diagonal
matrix elements V1,νv(c) =

∫ R

0
dr r|Rνv(c)(r)|2 V1(r) into the

non-parabolic Schrödinger equations, thereby obtaining,

ENP
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(
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2mvαz
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)
× χvα

(− ENP
νv (k)− eV1,νv

)− eV1,νv (6)

for the CB and VB, respectively. Now, we invoke the MLDA
by adding the correction potential V2(r, z) = V (r, z)− V1(r)
to the energy arguments of the non-parabolic local density of
states, Av(c)(r, r;E) =

∑
ν A

NP
νv(c)(r, z;E + eV2(r, z)), the

z-dependence of which reflects the finite gate length. As an
immediate consequence of the MLDA, the total charge density

containing the contributions of electrons in the conduction and
valence bands, emerges as a local functional of V2(r, z), i.e.,

ρ[r, V2(r, z)] = e
(
nv[r, V2(r, z)]−nc[r, V2(r, z)]−NA

)
, (7)

NA being the acceptor concentration, whereas the concentra-
tion of electrons nc(v), occupying the conduction (valence)
subbands inside the nanowire TFET, is expressed within the
MLDA as

nc(v)(r, z)

=
1

π

∑
ν

∣∣Rνc(v)(r)
∣∣2 ∫ dkFc(v)

(
ENP

νc(v)(k)− eV2(r, z)
)
,

(8)

with Fc(E) = fc(E) and Fv(E) = 1 − fv(E). fc(E)
and fv(E) respectively denote the Fermi-Dirac distribution
functions for the CB and VB incorporating the effect of
the applied source/drain voltage. As explained in detail in in
Ref. [8], the formal structure of both concentrations appearing
in (7) and (8) as local functionals of V2(r, z), is the key
ingredient to construct a non-linear action functional for the
electrostatic potential, the numerical minimization of which
yields a simultaneous solution of the Poisson and Schrödinger
equations, within the restrictions of the MLDA.

III. PHONON ASSISTED BTBT CURRENT WITHIN THE
MLDA

Once the self-consistent solution to the Schrödinger and
Poisson equations is obtained, the resulting electrostatic po-
tential profile V (r, z) enables the application of the MLDA to
calculate the probabilities for BTBT mediated by the absorp-
tion or emission of phonons [3]. Indeed, since also the spectral
functions for both bands appear to be local functionals w.r.t.
their dependence on the correcting potential V2(r, z), we may
write the BTBT transmission probabilities as

T abs,em
v (E) = Ω |M ′

k0
|2
∑
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0

dr rR2
νc(r)R

2
ν′v(r)

×
∫ LG

0

dz ANP
ν′v (z, z;E + eV2(r, z))

×ANP
νc (z, z;E + eV2(r, z)± �ωk0

)

≡
∑
ν,ν′

∫ R

0
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2
ν′v(r)T

abs,em
νν′v (r;E),

(9)

where Ω|M ′
k0
|2 is the electron-phonon strength for a phonon

with energy �ωk0
that bridges the electron transition between

the highest valence subbands and the lowest conduction sub-
bands. Then, the phonon-assisted line current density can be
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Fig. 2. Contour plot of the current densities as function of Vgs and r inside
the nanowire TFET of radius R = 2.5 nm. The applied drain voltages are (a)
Vds = 0.5 V, (b) Vds = 1.1 V.

computed from [3], [6]
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In the latter, ν(E) = (exp(βE)− 1)
−1 is the Bose-Einstein

distribution function and β = 1/kBT . Note that Jz(r) depends
only on r, thus complying with the requirement that a station-
ary current be solenoidal. Finally, the line tunneling current is
obtained by integrating over the cross section of the nanowire,
i.e. I = 2π

∫ R

0
dr rJz(r).

IV. RESULTS AND DISCUSSION

For the simulations, we have considered Si nanowires
with diameters ranging between 5 nm and 8 nm. The six
[100] oriented conduction band valleys are characterized by
their longitudinal mass ml = 0.916m0 and transverse mass

Fig. 3. Line tunneling current as function of the gate voltage for different
Vds in case of a nanowire TFET of radius (a) R = 2.5 nm and (b) R = 4
nm. The vertical axis represents the tunneling current per unit gate length.

mt = 0.19m0, whereas the heavy and light hole masses of the
valence band are respectively taken to be mhh = 0.49m0 and
mlh = 016m0. In all cases the gate length equals LG = 20
nm, while room temperature conditions are assumed. The
following material parameters have been used for the results
presented below: Eg = 1.12 eV, εs = 11.5ε0, εox = 15ε0,
tox = 1 nm. The acceptor doping concentration and the phonon
energy are respectively chosen to be NA = 1020 cm−3 and
�ωk0

= 18.4 meV. Accordingly, the electron-phonon strength
is given by Ω|M ′

k0
|2 = 4.86×10−25eV2cm3. When a positive

gate voltage is applied, i.e. Vgs > 0, the mobile holes are
repelled towards the center of the nanowire while the electrons
are piling up near the semiconductor/oxide interface, thereby
forming a n−channel. Although the electron concentration
was found to be much higher than the hole concentration,
there is a substantial spatial overlap of both profiles which
is reflected in the increased BTBT probability. The latter is
confirmed by the contour plot of the phonon-assisted BTBT
current density shown in Fig. 2 as a function of Vgs and r for
two different values of the source/drain voltage Vds, revealing
that the current density is mainly concentrated in the overlap
region r � 2nm. Furthermore, in Fig. 2 we observe that the
onset voltage for BTBT, and hence for its corresponding line
tunneling current, reaches the rather high value of Vgs = 1.97
V which is a consequence of strong carrier confinement which
is expected to lift up the subband energies in the CB while
pulling down the VB subband energies. Therefore, in order to
access to the first few electron and hole subbands, a higher
onset voltage needs be applied in comparison to the case of
the planar line tunneling current structures [3].
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(a)

(b)

Fig. 4. (a) Onset voltage as a function of the nanowire radius. The horizontal
black line represents the onset voltage of the planar TFET discussed in Ref. [3].
Different cases are considered: 1) parabolic CB and VB, 2) only a non-
parabolic CB and 3) nonparabolic CB and VB. (b) Comparison of the parabolic
and nonparabolic line tunneling current for R = 2.5 nm. In all cases Vds = 1
V.

In Figs. 3(a) and 3(b), the line tunneling current is plotted
as a function of Vgs for two nanowire TFETs with radii
R = 2.5 nm and R = 4 nm, respectively. As a first observation,
the onset voltage of the thinner nanowire is found to be
approximately 1.97 V, whereas it is reduced to 1 V for the
thicker nanowire, thereby approaching the onset voltage of the
planar TFET found in Ref. [3]. The latter is expected since the
confinement effect is less pronounced in the thicker wire, while
its band structure is more bulk-like. Secondly, in both cases the
current increases rapidly, while attaining different saturation
levels for higher values of Vgs. The saturation plateaus can be
ascribed to transitions of electrons between higher conduction
and lower valence subband levels, typically emerging with
increasing gate voltage. On the other hand, from Fig. 3, we
may infer the dependence of the onset voltage on the nanowire
radius which is confirmed by Fig. 4(a), explicitly depicting the
effect of the confinement on the onset voltage in nanowire
TFETs. Clearly, in order to line up the lowest conduction
subband and the highest valence subband, a larger gate voltage
is needed, as observed in Fig. 4(a) The latter also illustrates
how the inclusion of non-parabolicity corrections may degrade
the onset voltage, thereby mitigating the effect of confinement.
In particular, it turns out that a full parabolic and a full
non-parabolic treatment of both the CB and VB give rise to
an onset voltage difference of approximately 0.4 V for the

thinnest nanowire TFET. Moreover, neglect of the valence band
nonparabolicity leads to an overestimated onset voltage, even
for the thickest wire considered in this work.

Finally, for sake of completeness, Fig. 4(b) shows the
tunneling current for the following cases: parabolic CB and
VB, only non-parabolic CB, and non-parabolic CB and VB,
with Vds = 1 V in all three cases. Within the range shown
here, the parabolic line tunneling not only has a higher onset
voltage but its intensity is also found to be smaller than in
the corresponding non-parabolic cases. Indeed, since the non-
parabolic CB (VB) subband energies are lower (higher) than
their parabolic counterparts, the effective bandgap is lowered,
while more subbands are occupied, thus contributing to the
current.

In summary, using the MLDA-based variational approach
introduced earlier in Ref. [8], we have solved self-consistently
the Schrödinger and Poisson equations to study the phonon-
assisted BTBT in a nanowire TFET. Then, having expressed
the BTBT probability and its corresponding current den-
sity within the MLDA, the line tunneling current has been
computed for different nanowire radii, whereas non-parabolic
corrections for both the CB and VB were included. We have
found that carrier confinement in nanowire TFETs has a strong
impact on the onset voltage in comparison with the case of
planar TFET. Also, since a full parabolic treatment of the bands
overestimates the onset voltage, the inclusion of non-parabolic
corrections is crucial to predict the performance of Si-based
nanowire TFETs, especially in the case of thin nanowires.

This work was supported by the Flemish Science Foun-
dation (FWO-VI) and the Interuniversity Attraction Poles,
Belgium State, Belgium Science Policy, and imec Leuven.
H.C-N would like to thank the French funding agency CNRS
for the financial support at the last stage of this work.

REFERENCES

[1] S. K. Banerjee, W. Richardson, J. Coleman, and A. Chatterjee, “A new
three-terminal tunnel device,” IEEE Elec. Dev. Lett., vol. 8, pp. 347–349,
1987.

[2] A. S. Verhulst, B. Sorée, D. Leonelli, W. G. Vandenberghe, and G. Groe-
seneken, “Modeling the single-gate, double-gate, and gate-all-around
tunnel field-effect transistor,” J. App. Phys., vol. 107, pp. 024 518–
024 526, 2010.

[3] W. G. Vandenberghe, B. Sorée, W. Magnus, G. Groeseneken, and M. V.
Fischetti, “Impact of field-induced quantum confinement in tunneling
field-effect devices,” App. Phys. Lett., vol. 98, p. 143503, 2011.

[4] S. Jin, M. V. Fischetti, and T.-W. Tang, “Modeling of electron mobility
in gated silicon nanowires at room temperature: Surface roughness
scattering, dielectric screening, and band nonparabolicity,” J. App. Phys.,
vol. 102, p. 083715, 2007.
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