
Compact Modeling for                               
Application-Specific High-Sigma Worst Case 

 

Hsuan-Han Wang, Yi-Ling Chen, Chang-Chieh Yang, Chung-Kai Lin, Min-Chie Jeng 
Taiwan Semiconductor Manufacturing Company 

168, Park Ave 2, Hsin-Chu Science Park, Hsin-Chu County, Taiwan 308-44, R.O.C  
Email: hhwangd@tsmc.com, cklinb@tsmc.com 

 

Abstract—A high-sigma corner model derived from Monte 
Carlo simulation with a novel sampling algorithm is presented. 
Compared with the traditional Monte Carlo simulation 
approach, the simulation effort and computational resource is 
greatly reduced. This methodology can be applied to create 
application-specific corner model for different design spec 
leading to more competitive designs. 
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I. INTRODUCTION 
Device variability has drawn lots of attention in advanced 

technologies. Accurate and appropriate variation modeling has 
become one of the critical issues for design enablement [1,2]. 
The detailed partition for different types of variation sources 
have been discussed and modeled, including local variation, 
global variation and variation correlation [3,4]. Traditionally, 
circuit designers use the corner model to define the worst-case 
design envelope. However, there are two major shortages for 
the corner simulation approach. Firstly, although the worst-
case of MOSFETs defined at 3 sigma of the saturation current 
(Idsat) may fulfill the digital applications, it fails to predict the 
worst-case condition for analog designs, which are more 
sensitive to transconductance (Gm) and output conductance 
(Gds), as shown in Fig. 1. 

The other issue is the lack of capability for mismatch 
and local variation cancellation simulation. All of the 
transistors see the same amount of variation under corner 
simulation, so users cannot perform local variation simulation 
for individual transistor correctly. As a result, designers often 
rely on Monte Carlo simulation to identify the worst case for 
critical blocks, especially for analog designs.  

For a small size of circuits, a full Monte Carlo run is 
feasible, However, for large-sized memory designs, 
yield estimation and failure analysis count on reliable statistical 
data up to 6 sigma’s or even higher, which will need at least 
tens of millions of MC simulations to accurately predict the 
distribution tail. It is both challenging and time consuming 
using the conventional MC simulation approach to reach such 
high-sigma region. This motivated us to seek for a better 
solution, which can catch the worst-case scenario through an 
efficient MC simulation. In this work, a novel sampling 
methodology to reduce the number of MC simulation is 
presented. This flow can be applied to many applications 
and extended to define the high-sigma corners. Some examples 
are presented to illustrate this methodology, including 
application-specific corner creation, defining the worst-case 
high-sigma corners for SRAM cell current, static-noise margin 
and write margin. Compared to the traditional Monte Carlo 
approach, this new methodology enhanced the simulation 
efficiency by orders of magnitude. 

II. METHODOLOGY  
To get a high-sigma distribution effectively, we must 

reduce the sampling size without sacrificing accuracy. For a 
pure Gaussian distribution, it’s fairly easy to predict the high-
sigma distribution by linear extrapolation from a limited data 
set.  

N_sigma_worst_case = Median +/- N * sigma           (1) 

In reality, most of the distributions such as the SRAM cell 
current under low-voltage biasing are not ideal Gaussian 
distributions [5]. Using linear extrapolation will either 
overestimates or underestimates the results in the high-sigma 
region. To resolve this issue, we adopted a power 
transformation to the target data so that the distribution of the 
transformed data approaches to a pure Gaussian distribution as 
shown in Fig.2.  

 Fig.1 The silicon data show the group of Idsat /Vtgm worst case 
(the solid dots linked by solid line) is not the worst case of Gds= 
dId/dVg (the open dots linked by dash line). A universal corner 
to cover the device variation is not existed. Under this case, the 
digital corner defined by Idsat/Vtgm underestimated the 
variation of Gds.   
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The high-sigma distribution of the original data can be 
obtained by linear extrapolation in the transformed domain 
followed by an inverse transformation. We have compared this 
high-sigma sampling methodology against direct MC 
simulations and validated with silicon. Both cases showed that 
this methodology is an efficient method to predict high-sigma 
distribution accurately and reliably. 

A. Comparison with direct MC simulation  
To validate the high-sigma sampling methodology with 

direct MC simulation, we simulated 10 million MC of SRAM 
cell currents and used them as the golden data. As expected, 
the cell current distribution at lower voltage is not a Gaussian 
as shown in Fig. 3. Directly using low-sigma data for 
projection would significantly underestimate the SRAM cell 
current at the high-sigma region. We randomly selected only 
100 thousand samples out of these 10 million MC simulations 
and applied the proposed methodology to project the high-
sigma region. As observed in Fig. 3, the result matches that of 
10 million direct MC simulations quite well.  

To ensure that this methodology is robust and stable, we 
repeated this exercise 100 times in randomly selecting 100 
thousand data for projection.  The results are all stable and 
consistent as shown in Fig. 4. The max difference is less than 
1.5% of Icell among 100 different sampling sets. It 
demonstrates the repeatability of this methodology. 

B. Validation with Si statistical data 
After validating with direct Monte Carlo simulation, we 

would like to verify the sampling methodology with 
measured silicon data. There were 2.8 million 6T SRAM cell 
currents measured under two bias conditions (0.9V and 0.72V) 
from a TSMC advanced technology. Firstly, the SPICE model 
was calibrated for single SRAM device, including PG, PU 
and PG transistors. The 100 thousand MC runs were then 
simulated and used as the golden database for high sigma 
projection. As we expected, the model can match the median 
and 3-sigma deviation of the cell current well. The proposed 
high sigma sampling methodology was applied to these MC 
simulations to validate with 4.9sigma silicon (2.8 million data 
points equivalent). As shown in Fig. 5, the matching between 
Monte Carlo projection and silicon is good and the projection 
up to 6.5-sigma is also on a reasonable trend for both 
bias conditions. Most importantly, the number obtained from 
proposed methodology is more competitive than that of 
the conventional linear approximation. It helps designers to 
remove the unnecessary guard band for the design sign off. 

Fig.2 Through the power transformation, the non-Gaussian 
distribution can be converted in to Gaussian distribution and 
ready for linear extrapolation. 

 
Fig.4 Less than 1.5% Icell difference is observed among 100 sets 
of exercises. Both 5 and 6 sigma results are extracted from 100 
thousand randomly picked samples. It shows the stability of the 
sampling methodology.  

Fig.3 The prediction of high-sigma sampling methodology 
matches the distribution of direct MC simulations. In the 
most cases, the liner extrapolation underestimated the Icell 
level at high sigma regime.  

  
 
 
 
 
 
 
 
 

 
 

Fig.5 The prediction matches well with the distribution of 2.8Mb 
SRAM cell current for both 0.9V and 0.72V. 
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III. EXAMPLE APPLICATIONS 
This sampling methodology can be applied to many 

applications requiring either accuracy in high-sigma regions, or 
long simulation time needed due to complicated circuit 
architecture. We will present three real cases, the worst 
bit corner for SRAM cell current, the worst bit corner for 
SRAM Static Noise Margin (SNM) and Write Margin (WM) 
failure analysis and simulation efficiency improvement for 
analog circuit with multiple types of devices. All three 
examples follow the flow chart illustrated in Fig. 6, including 
statistical model building, minimum set of Monte Carlo 
simulation, power transformation, effective corner building 
and finally corner simulation.  

A. Worst-bit corner  model for SRAM cell current 
Traditional SRAM cell performance simulation is 
performed based on the 3-sigma corner model for pull-down, 
pass-gate, and pull-up devices. There are two major issues for 
the 3-sigma based corner simulation. For the lower sigma 
region, the cancellation of local variation among these devices 
are not considered, so the result predicted by the corner model 
is too conservative even for the lower sigma region. For the 
higher sigma region, the linear approximation from 3-
sigma corner cannot reflect the non-Gaussian distribution, so 
the gap is getting worse as the number of sigma 
increases compared with Monte Carlo simulation shown in Fig. 
7(a). Although Monte Carlo simulation is one of the solutions 
to resolve this issue, the long simulation time is still 
a common concern for Monte Carlo simulation. As a result, we 
apply the proposed sampling methodology to extend 100K 
Monte Carlo results and get high sigma distribution at a given 
global variation corner. The worst bit corner (WBC) model can 
be constructed with scalable sigma factor to characterize cell 
current as shown in Fig. 7(b). Designers can obtain the tail of 
the cell current distribution by sweeping sigma factor in WBC 
model. 

 To take the most advantage of the Icell vs. sigma factor 
shown in Fig. 7, we calibrate the sigma factor for 
different combination of memory size and yield percentage as 
listed in table 1. The table represents the required sigma to 
satisfy the specified yield for a given memory size. The yield is 
evaluated by the all-bit-pass rate of the memory array for two 
data states expressed as following: 

 )2()1( 2 N
bitYield Ρ−=  

where N is the cell array size. Pbit is the probability of 1-bit 
failure out of N cells memory while assuming the each bit 
failure is an independent event [6]. 

The new feature actually allows designers to do 
yield analysis with the specified sigma number set in the 
SPICE netlist directly. This is a significant enhancement for 
memory design simulation in advanced technologies, for which 
the memory size is usually quite large. 

B. Worst-bit corner model for SRAM Static-Noise Margin 
(SNM) and Write Margin (WM)  

The simulation of minimum static noise margin (SNM) 
and write margin (WM) involve both global and local variation, 
so the traditional corner is inadequate for this purpose. In 
addition, designers may need a specific model to optimize the 
read/write assistant circuit, so only a simple SNM/WM number 
projected from Monte Carlo simulation is not good enough for 
practical usage. As a result, we applied the proposed high 
sigma sampling methodology to overcome this challenging. 
Firstly, the minimum set of Monte Carlo simulation is 
simulated to reflect SNM/WM distribution at various operating 
voltages. Followed the methodology discussed in this work, the 
high sigma behavior can be predicted from golden data set 
generated by Monte Carlo runs. Finally, the enhanced corner 
model can be derived from those predicted numbers with a 
scalable sigma factor (n). The characteristic of static noise 

Fig.6 A general flow and usage of high-sigma worst bit corner 
model. 

  
Fig.7 (a) Traditional corner model outputs lower cell current 
than statistical model, especially at high sigma region (left). (b) 
Cell current WBC corner with good scaling of sigma factor up 
to 6s is developed to provide the design reference of cell 
optimization (right). 

  
Table.1 The number in this table represents the required sigma 
to satisfy the specified yield for a given memory size. 

1M 8M 32M 64M 128M 256M 512M 1024M
99.9% 6.12 6.44 6.65 6.75 6.85 6.95 7.05 7.14
95% 5.46 5.81 6.04 6.15 6.26 6.37 6.47 6.58
50% 4.97 5.36 5.61 5.73 5.84 5.96 6.07 6.18

Memory array sizeYield
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margin and write margin versus different Vdd ranges 
is captured and presented in Fig. 8 (a) and (b). This is the first 
time the SNM and WM simulation can be done by corner 
model with high sigma scaling. It indeed provides memory 
designers a very efficient design reference for cell performance 
optimization and possible read/write assistance.  

 

C. Analog Circuit Simulation time improvement 
Traditionally, the corner model is designed for digital 

application and implemented for the speed and leakage 
optimization.  Analog performance is usually related to low 
bias and many analog parameters, like transconductance (Gm) 
and output conductance (Gds) do not exhibit Gaussian 
distribution. As a result, the worst case of analog parameters 
usually cannot share the same worst case as 
speed and leakage corners.  On top of this, analog performance 
often involves the mismatch of various devices, such as 
Resistor, BJT and MOSFET. As a result, corner models are not 
adequate to identify the worst case of analog performance as 
shown in Fig.9.  

Instead, MC simulations are common in the analog 
designer community to locate the worst-case situations. In this 
example, we adopt 100 MC simulations with power 
transformation on the same circuit used in Fig. 8 and extend 
the result to predict the 3-sigma performance. The prediction 
matches well with the distribution from 2000 directs MC 

simulations with more than 20X speed-up in simulation time. 
This significant simulation time improvement can encourage 
designers using more MC simulation in design optimization.  

IV. CONCLUSION 
We have demonstrated a novel sampling methodology to 

accurately predict the distribution beyond 6-sigma without the 
need of huge amount of MC simulations. Both direct MC 
simulations and silicon have validated the accuracy and 
stability of this methodology. In addition, a general flow 
to create high-sigma worst-case model is presented. 
Applications such like SRAM cell current, SNM, and WM 
worst bit corner model have been developed and implemented 
in TSMC advanced technologies. The same approach can be 
extended to create analog-specific corner model and other 
application-specific worst-case models.  
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 Fig.9 Tradition 3sigma corner model may overestimate or 
underestimate the variation of circuit simulation. The prediction 
from 100 data points matches well with 2000 points MC 
simulation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.8 A compact corner model with sigma factor (n) as an 
instance is developed to reflect the characteristic of static noise 
margin (top) and write margin (bottom) in SRAM. 
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