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Abstract—This work investigates the performance of the statis-
tical impedance field method in the analysis of the amplitude of
random telegraph noise fluctuations in nanoscale MOS devices.
Considering different channel doping profiles, we show that this
method offers a practical compromise between accuracy and
computational loads, allowing a good assessment of the RTN
amplitude statistics while resulting in non-negligible errors on
the single microscopic samples where atomistic doping strongly
contributes to non-uniformities of channel inversion and to
percolative source-to-drain conduction.
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I. INTRODUCTION

Random Telegraph Noise (RTN) represents one of the most
challenging reliability issues for nanoscale MOS devices and
the statistical analysis of its features is a mandatory task to
fully understand its impact on state-of-the-art technologies. In
particular, the statistical distribution of the RTN amplitude
is an extremely important piece of information for digital
components, such as SRAM and Flash memories, where the
large number of devices per chip requires the exploration of
the distribution down to very low probability levels [1]–[3].
From the numerical simulation standpoint, this can be hardly
achieved by conventional Monte Carlo (MC) approaches re-
producing in the simulation domain microscopic differences
in device structure, pushing for the search of new numerical
schemes with less demanding computational burdens.

In this work, we show that the statistical Impedance Field
Method (sIFM) [4] offers a practical compromise between
accuracy and computational loads in the analysis of the RTN
amplitude of nanoscale MOS devices. Considering various
channel doping profiles and following an MC approach to
gather statistical results on samples with different atomistic
doping configurations, which are not numerically implemented
in the simulator but dealt with in a simplified manner, we show
that the sIFM allows a good assessment of the RTN amplitude
statistics, despite failing in correctly addressing the single
MC samples where atomistic doping largely compromises the
uniformity of channel inversion. The loss in accuracy, however,
is compensated by a strong reduction of the computational

Fig. 1. Schematics for the Flash cell investigated in this work.

requirements of the method, allowing, in turn, the exploration
of the RTN statistics down to lower probabilities than those
accessible by conventional MC approaches.

II. NUMERICAL APPROACH

We investigated the amplitude of RTN fluctuations on
the template Flash cell shown in Fig. 1, representing just
a test case for our analysis. The device features an 8 nm
tunnel oxide, a 70 nm polysilicon floating gate, a 4-3-5 nm
oxide-nitride-oxide (ONO) interpoly dielectric and a uniform
substrate doping 𝑁𝐴 = 2 × 1018 cm−3 (except were noted).
Cell width and length are 𝑊 = 𝐿 = 32 nm. The RTN
amplitude statistics was calculated according to two different
MC approaches, both giving the drain current vs. control-gate
voltage (𝐼𝐷-𝑉𝐶𝐺) characteristics (drain bias 𝑉𝐷 = 100 mV)
of a large number of samples having a different atomistic
doping configuration and a single (randomly placed) RTN trap
at the channel surface. The first method (used as reference) is
the conventional MC scheme consisting in the Poisson/drift-
diffusion simulation of each sample reproducing in the numer-
ical domain the atomistic nature of doping [5], [6]. The second
one, instead, makes use of the sIFM [4] for the calculation of
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Fig. 2. Block diagram for the sIFM scheme considered in this work. Shaded
blocks are directly managed by the commercial simulator SDevice [8].

the 𝐼𝐷-𝑉𝐶𝐺 curve as shown in Fig. 2. For each bias point,
the Green Function 𝐺0 is first calculated from the solution of
the Poisson/drift-diffusion equations in the case of continuous
doping and neutral RTN trap. Then, 𝑁𝑑𝑜𝑝 configurations of
dopants are generated and, for each of them, the 𝐼𝐷 difference
(𝛿𝐼𝐷) from the case of continuous doping is calculated as
shown in the figure, namely, considering 𝐺0 as the impulsive
response to a local variation of doping with respect to the
continuous case [4], [7]. Repeating this procedure for each
𝑉𝐶𝐺, the 𝐼𝐷-𝑉𝐶𝐺 curve is calculated for each doping con-
figuration, giving the corresponding neutral threshold voltage
(𝑉𝑇 ) as the 𝑉𝐶𝐺 value required for the condition 𝐼𝐷 = 100 nA
to hold. In order to deal with the negatively charged RTN
trap case, then, a new Green function (𝐺−) is calculated
from the Poisson/drift-diffusion solution obtained in the case
of continuous doping when a single elementary charge −𝑞
is added at the channel surface. Using 𝐺−, new 𝐼𝐷-𝑉𝐶𝐺
curves are calculated for the previously investigated ensemble
of atomistic doping configurations, obtaining, for each of them,
the amplitude Δ𝑉𝑇 of the fluctuation given by the RTN trap
placed at the position of the charge −𝑞 as the 𝑉𝑇 shift with
respect to the neutral 𝑉𝑇 . In order to explore different trap
positions, the calculation of the 𝐼𝐷-𝑉𝐶𝐺 curve in presence of
the filled RTN trap was repeated 𝑁𝑡𝑟𝑎𝑝 times, thus obtaining
a total number of 𝑁𝑡𝑟𝑎𝑝 ×𝑁𝑑𝑜𝑝 Δ𝑉𝑇 values.

III. RESULTS

Fig. 3 shows the sIFM-simulated 𝐼𝐷-𝑉𝐶𝐺 curve of some
atomistic doping configurations of the device of Fig. 1, in the
case of neutral RTN trap. In order to quantitatively compare
these results with those obtained from the reference MC
method, the cumulative distribution of neutral cell 𝑉𝑇 is
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Fig. 3. 𝐼𝐷-𝑉𝐶𝐺 curves for some of the atomistic doping configurations of
the device of Fig. 1, as resulting from the sIFM in the case of empty RTN
trap. Inset shows the 𝑉𝑇 (@100 nA) cumulative distribution from the sIFM
and the reference MC method.

0 20 40 60 80 100 120 140 160
ΔVT [V]

10
-2

10
-1

10
0

1-
C

um
ul

at
iv

e 
pr

ob
ab

ili
ty

Ref. MC
sIFM

Uniform doping

Ndop=100
Ntrap=1

Fig. 4. Δ𝑉𝑇 cumulative distribution as resulting from the reference MC
method and the sIFM.

reported in the inset: a good agreement between the distri-
butions resulting from the two methods appears in terms of
both average value and standard deviation, confirming the
validity of the sIFM for the investigation of atomistic doping
effects on neutral 𝑉𝑇 [4]. Fig. 4 shows, moreover, that the
sIFM can also correctly reproduce the statistical distribution
of the RTN amplitude Δ𝑉𝑇 coming from the reference MC
method, following an exponential trend with average value
⟨Δ𝑉𝑇 ⟩ ≃ 31 mV [6] (note that both the sIFM and the
reference MC simulations were performed on the same set
of microscopic cells, with 𝑁𝑑𝑜𝑝 = 100 and 𝑁𝑡𝑟𝑎𝑝 = 1).

Notwithstanding the good matching of the Δ𝑉𝑇 statistics,
Fig. 5 reveals non-negligible displacements between the sIFM
and the reference MC results when directly considering the
Δ𝑉𝑇 of the single microscopic samples. In particular, errors
in the sIFM scheme may consist either in an underestimation
or in an overestimation of the real Δ𝑉𝑇 of the samples
with similar probability (see the similar dispersion of the
points of the scatter plot about the graph bisector), explaining
why these inaccuracies do not critically impact the statistical
results of Fig. 4. These errors are the direct consequence
of the linear approximations involved in the solution of the
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Fig. 5. Scatter plot for the sIFM and reference MC Δ𝑉𝑇 .
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Fig. 6. Top: Simulated 𝐼𝐷-𝑉𝐶𝐺 curve for a cell leading to the unphysical
resuls of a negative Δ𝑉𝑇 after electron trapping in sIFM calculations. Results
from the reference MC method are also shown. Bottom: Corresponding
electron current density at threshold in the case of empty RTN trap, whose
position is highlighted with a ×.

Poisson/drift-diffusion equations in the sIFM [4], [7], making
critical dealing with doping configurations leading to highly
non-uniform channel inversion and strong percolative source-
to-drain conduction. Fig. 5 shows that the resulting errors in
the sIFM may be so large to predict the unphysical result of
a negative Δ𝑉𝑇 after electron trapping in some cases. One
of these cases is addressed in Fig. 6, showing that the sIFM
largely fails in determining the cell 𝐼𝐷-𝑉𝐶𝐺 curve both for
the empty and for the filled trap state. The strong impact of
atomistic doping on cell conduction in this case clearly appears
in the current density profile at threshold, highlighting a strong
percolation path along one of the active area edges and the
presence of the RTN trap over the other one.
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Fig. 7. Schematics for the cell structure considered in this work to investigate
a vertically non-uniform doping profile and corresponding Δ𝑉𝑇 cumulative
distribution, as resulting from the sIFM and the reference MC method. (a)
and (c) refer to a retrograde channel doping, (b) and (d) to a 𝛿-shaped profile.
The thickness of the undoped epitaxial layer is in both cases 𝑡𝑒𝑝𝑖 = 16 nm.
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Fig. 8. Same as in Fig. 5, but for the doping profiles of Fig. 7a-b.

Fig. 7 extends our analysis of the sIFM to devices with a
vertically non-uniform channel doping, consisting in a retro-
grade (Fig. 7a-c) or in a 𝛿-shaped (Fig. 7b-d) profile with a
thickness of the undoped epitaxial layer 𝑡𝑒𝑝𝑖 = 16 nm. These
profiles aim at reaching a more uniform channel inversion
by keeping ionized dopants far from the silicon surface, thus
reducing neutral 𝑉𝑇 variability [9] and narrowing the RTN
amplitude statistics [10]. In both the doping cases, the sIFM
appears to correctly reproduce the Δ𝑉𝑇 statistics coming from
the reference MC scheme, further validating the method when
looking at the ensemble of the Δ𝑉𝑇 values. Moreover, Fig. 8
reveals that, in contrast with what shown for uniform doping
in Fig. 5, the sIFM in these cases correctly deals also with
each individual MC sample, nicely matching each single Δ𝑉𝑇
coming from the reference MC method. This is the result of a
lower impact of atomistic doping on channel inversion when
dopants are far from the silicon surface, making the linear
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Fig. 9. Same as in Fig. 7 but for a doping profile changing along 𝐿 (see (a)
and (c)) and along 𝑊 (see (b) and (d)). Doping concentrations are in cm−3.

approximations involved in the sIFM more valid. To complete
our analysis, Fig. 9 shows that the sIFM succeeds also in
reproducing the Δ𝑉𝑇 statistics of the reference MC method
when considering a non-uniform doping profile changing
along 𝐿 (Fig. 9a-c), while being less accurate when dealing
with a doping change in the 𝑊 direction (Fig. 9b-d).

The agreement between the sIFM and the reference MC
results on the Δ𝑉𝑇 statistics allows to exploit the key benefit
of the sIFM, i.e., its reduced computational loads. Note, in fact,
that the sIFM requires the correct solution of the Poisson/drift-
diffusion equations only in the case of continuous doping,
for the neutral and the filled trap states. As the solution for
the neutral state of all the 𝑁𝑡𝑟𝑎𝑝 cases coincides, this means
that these equations are to be solved 𝑁𝑡𝑟𝑎𝑝 + 1 times to
gather a statistics of 𝑁𝑡𝑟𝑎𝑝 × 𝑁𝑑𝑜𝑝 values of Δ𝑉𝑇 , with a
significant reduction of the computational burdens. This, in
turn, means that for the same computational efforts, the sIFM
allows to explore the Δ𝑉𝑇 statistics down to lower probability
levels than the reference MC method. This was done, for
instance, in Fig. 10, where the statistical distribution of Δ𝑉𝑇
resulting from the sIFM is extended down to ≃ 10−4 for
all of the explored channel doping profiles. This allows to
better appreciate the impact of non-uniform doping on the
RTN amplitude distribution, highlighting its strong narrowing
when a retrograde or a 𝛿-shaped doping is adopted and the
possibility either to enlarge or to narrow the distribution at
low probabilities through 𝐿-changing or 𝑊 -changing profiles.

IV. CONCLUSIONS

We showed that the sIFM represents a valid compromise
between accuracy and computational loads in the statistical
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Fig. 10. Δ𝑉𝑇 statistics for all the doping profiles investigated in this work,
as resulting from the sIFM in the case of 𝑁𝑑𝑜𝑝 = 100 and 𝑁𝑡𝑟𝑎𝑝 = 100.

analysis of the RTN amplitude of nanoscale MOS devices
with different doping profiles, allowing a good assessment
of the Δ𝑉𝑇 statistics while committing non-negligible errors
on single microscopic samples where uniformity of channel
inversion is strongly compromised by atomistic doping.
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