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Abstract—An important contribution to charge transport in
amorphous-chalcogenide materials used for manufacturing mem-
ory devices is due to the trap-to-trap transitions. Here the physics
of the phenomenon is worked out as a combination of energy and
space transitions, and its probability is expressed in closed form
in terms of microscopic parameters. The results are useful for
setting up the macroscopic master equation to be used in Monte
Carlo analysis or TCAD codes.

I. INTRODUCTION

Some of the amorphous chalcogenide materials exhibit
a transition from a highly resistive to a conductive state,
characterized by a voltage snap back. Thanks to this feature
they are used in the fabrication of nonvolatile memories [1].
An important contribution to carrier transport in chalcogenides
is due to electron transitions via localized states (traps) [2].
In fact, in such materials the temperature and field depen-
dences of the conductance show that transport occurs mainly
via thermally-activated trap-limited mobility, with electrons
moving from one site to another in the band or, at least, above
the band-mobility edge [3].
This paper focuses on trap-to-trap transitions, and aims at
working out a consistent expression of the current due to them.
To this purpose, the localized traps within the chalcogenide
material are associated to spatial sites that are labeled with
an integer, e.g., i, j, while the volume and trap concentration
of the ith site are Ωi and Ni. A trap is neutral when filled
with an electron, positive when empty. Letting 0 ≤ αi ≤ 1 be
the fraction of filled traps of the ith site, the current flowing
between the ith and jth site is given by the macroscopic master
equation (1), whose unknowns are the fractions αi, αj :

Iij = q N̄i N̄j
[
S0+

ji αj (1− αi)− S0+

ij αi (1− αj)
]
. (1)

In (1) it is N̄i = ΩiNi, q > 0 is the electron charge, and S0+

ij

the probability per unit time that an electron makes a transition
from a filled trap belonging to site i to an empty trap belonging
to site j (in the symbols used here, the charge states are labeled
“0” and “+”, respectively). For the applications to Computer-
Aided Design it is necessary to express the coefficients of (1)
in terms of easily-accessible quantities, like electric potential
and temperature. In the literature the probability transition per
unit time S0+

ij is usually expressed after Miller and Abrahams
[4] as

S0+

ij = ν0 exp[−rij/r0 − q (ui − uj + |ui − uj|)/2] , (2)

where ν0 is the attempt-to-escape frequency, rij the distance
between the two trap sites, ui = ϕi/(kBTL) the normalized
electric potential at the ith site, and r0 a normalizing factor
that depends on the energy barrier existing between the two
sites. One notes that in (2) the electric potential plays a role
only when ϕi > ϕj . In this paper the form of S0+

ij is worked
out starting from a microscopic analysis, and compared with
the approaches of [4].
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Fig. 1. Potential energy within a one-dimensional schematization of the
chalcogenide material in a non-equilibrium condition, with EFR(L) the Fermi
level of the right (left) lead. The bottom levels of the conduction band of the
left and right lead are shifted by V with respect to each other. The relative
shift in the ground levels of two adjacent traps due to the nonuniformity of
ϕ is assumed to equally distribute over the two sides of the barrier between
the traps.

II. MODEL

The process by which an electron moves from the ith to the
jth site is described as the combination of phonon absorption,
propagation at constant energy E, and phonon emission [5].
The traps are modeled as rectangular wells (this approximation
is discussed later). A particle initially localized in an energy
state Er−qϕi of a trap in the ith site makes a transition to an
energy state Es − qϕj of a trap in the jth site, where r, s =
0, 1, . . . (Fig. 1). In principle, the electron may occupy any of
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the discrete energy states within the trap; however, it will be
assumed for simplicity that in a filled trap the electron always
belongs to the ground state due to the energy relaxation with
the lattice. This approximation is easily removed by assuming
that the population of electrons within Ωi distribute over the
trap states according to the Fermi statistics. The energy shift
q(ϕi−ϕj) between the ground levels of two adjacent traps, due
to the external potential, is assumed to equally distribute over
the two sides of the barrier between the traps. Consequently,
the top of the barrier between the two traps has an energy
U0−q(ϕi+ϕj)/2, with U0 the energy of the top of the barrier
at equilibrium. For the sake of clarity the energy E is drawn
in Fig. 1 above the top of all barriers. In the actual cases it
may happen for some barrier that U0 − q(ϕi + ϕj)/2 > E.
The important constraint is in fact that E be above the barriers
between the device and the external leads; specifically, E must
be larger than the the bottom of the conduction band of both
left and right lead, otherwise the particle would not be able
to propagate: with reference to Fig. 1, E > Em − qV and
E > Em, respectively, with V the voltage drop across the
device. The use of the same symbol Em for the left and right
leads implies that they are made of same material. To calculate
the transition of an electron from one trap to another it is useful
to define η = Em − E0 > 0, with E0 the ground energy of
the traps at ϕ = 0. It follows that the wave vector kL (kR)
to be associated to the electron on the left (right) side of the
barrier is k2

L(R)
= (1/h̄) [(2m) (E − Em + η + q ϕi(j))]

1/2.
The propagation of the electron from the left to the right of
the barrier, or viceversa, is determined by the transmission
coefficient Tij , whose calculation is straightforward. Note that
Em−U0 = (Evac−U0)−(Evac−Em), with Evac the vacuum
level. The second term in parentheses at the right hand side of
the above is the work function of the lead. By analogy, the first
term may be thought of as the electron affinity of the material.
Both terms in parentheses are positive. As a consequence, at
the interface between the material and the lead a thin barrier is
formed (not shown in figure 1), that is crossed by the electrons
by tunneling.

Letting Er = E0, the first part of the transition process
from the initial to the final state is assisted by the absorption
of a phonon of energy E− (E0− q ϕi). Assuming V > 0, the
minimum value of E is Em. Let P (E0 − qϕi → E) be the
probability of the transition from E0−qϕi to E due to phonon
absorption; in the Golden-Rule approximation, the probability
of the transition from E to E0− qϕi, due to the emission of a
phonon of energy E − (E0 − qϕi), is the same as above. Let
Pi indicate the common value of the two, that reads

Pi = θi [δ(ΔE − h̄ ω) + δ(ΔE + h̄ ω)] Δti , (3)

with θi = (2 π/h̄) |h(0)

i |2 an energy over a time, h(0)

i the
entry of the perturbation matrix involving the initial and final
states of the electron ([h(0)

i ] = J), ΔE = E0 − q ϕi − E,
ω > 0 the phonon’s angular frequency, and Δti the duration
of the electron-phonon interaction. Similarly, let P (E′ →
E0 − qϕj) be the probability of an electron transition from

the energy E′ to the energy E0 − qϕj due to the emission
of a phonon of energy E′ − (E0 − qϕj). The probability of
the transition from the energy E0− qϕj to the energy E′ due
to the absorption of a phonon of energy E′ − (E0 − qϕj)
is the same as above. The common value of the two is
Pj = θj [δ(ΔE′ − h̄ ω′) + δ(ΔE′ + h̄ ω′)] Δtj , with θj =

(2 π/h̄) |h(0)

j |2. The meaning of the symbols in the above is
analogous to that in (3). The above treatment can be extended
to incorporate the multi-phonon absorption/emission processes
using, e.g., the multiphonon probability in the single-energy
phonon approximation [6].

Let ΩiNi αi = N̄i αi be the number of filled traps at
site i, and α(E) g(E) dE the number of filled states in the
interval dE around E > Em, with g(E) the density of
states and α(E) the fraction of occupied states of the band.
Then, let nph gph dh̄ω be the number of phonons in the
interval dh̄ω centered on the energy h̄ω, with nph(h̄ω) the
phonons’ average occupation number and gph(h̄ω) the corre-
sponding density of states. The product Qi(E,ω) dω dE =
N̄i αi Pi n

phgph dh̄ω [1 − α(E)] g(E) dE is the number of
transitions from E0 − qϕi to the interval dE centered on E
due to the absorption of the phonons belonging to the interval
dh̄ω centered on h̄ω. In turn, the productQj(E′, ω′) dω′dE′ =
N̄j (1 − αj)Pj (nph + 1) gph dh̄ω′ α(E′) g(E′) dE′ is the
number of transitions to E0 − qϕj from the interval dE′

centered on E′ due to the emission of phonons belonging
to the interval dh̄ω′ centered on h̄ω′. Integrating the product
Tij Ē δ(E′ − E)QiQj dω′ dω dE′ dE, first over h̄ω and h̄ω′

from 0 to ∞, then over E′ from Em to ∞, yields the number
of phonon-assisted transitions from site i to site j associated
to the energy E. The factor Ē δ(E′ − E), with Ē a constant
energy, accounts for the fact that the transmission occurs
only for E′ = E > Em. Due to the δs in Pi and Pj ,
the first integration fixes h̄ω to h̄ωi = E − (E0 − q ϕi) =
E − Em + η + q ϕi in the absorption term, and fixes h̄ω′ to
h̄ωj = E′− (E0−q ϕj) = E′−Em+η+qϕj in the emission
term.
If the expressions worked out so far are considered in the
equilibrium case, using the principle of microscopic balance
with nph

i = 1/{exp[h̄ωi/(kBT )]− 1} yields for αi the Fermi
statistics, as should be. In the non-equilibrium case the number
Γij of the i → j transitions differs from the number Γji
of the j → i transitions. Letting Δtj = Δti, defining the
dimensionless quantity Gij = gph

i θi g
ph

j θj t
2

P , and indicating
the common value with tP , and remembering that Tji = Tij ,
one finds

dΓij = N̄i N̄j (1− αj)αiGij n
ph

i (nph

j + 1)Tij(E)×

×α(E)[1 − α(E)]
{
Ē g2(E) dE

}
, (4)

while Γji is found by interchanging the indices in (4). The
current flowing between sites i and j is given by the net
number of transitions per unit time multiplied by −q. In turn,
the net number of transitions per unit time for each energy
E is dΓij/dtP − dΓji/dtP . As all energies above Em are
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possible, the result of the differentiation must be integrated
over E from Em to ∞, to yield

Iij = −q
∫ ∞

Em

d
dtP

(Γij − Γji) dE . (5)

Comparing (5) with (1) and using (4) yields the coefficients
sought:

S0+

ij =

∫ ∞

Em

Fij n
ph

i (nph

j + 1) dE ,

S0+

ji =

∫ ∞

Em

Fji n
ph

j (nph

i + 1) dE , (6)

where Fij = Tij(E)α(E) [1 − α(E)] (2Gij/tP ) Ē g2(E) is
the inverse of an action, Fji = Fij . It follows that (6) are the
inverse of a time as should be. The transition rates S0+

ij , S0+

ji

are different from each other due to the extra phonon present
in the emission events, and transform into each other when i
and j are interchanged. It is worth noting that the assumption
that the barriers are rectangular has not played a role so far.
In fact, expressions (6) are general and do not depend on how
the term Tij is calculated. The use of rectangular barriers will
in fact be exploited below to obtain an analytical form of S0+

ij ,
suitable for the implementation into Monte Carlo or general-
purpose TCAD simulators.
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Fig. 2. Normalized probability per unit time S0+
ij /ν0+

ij (right scale) and
transmission coefficient Tij (left scale) as a function of the energy difference
q (ϕi − ϕj) between traps, at TL = 300K. A rectangular barrier with a 4

nm thickness has been considered, with η = 50 meV, and ϕj has been set to
zero. The parameters have been calibrated to obtain both the real-exponential
and the oscillatory behavior of Tij , depending on q ϕi.

III. DISCUSSION

As shown earlier, the terms nph

i , gph

i depend on h̄ωi =
E − E0 + qϕi while the terms nph

j , gph

j depend on h̄ωj =
E − E0 + qϕj . It is expected that the average occupation
numbers monotonically vanish as E increases. To specify
their form it is reasonable to use the equilibrium expression
nph

i = 1/{exp[h̄ωi/(kBT )]−1}. In contrast, little information
is available about the densities of states gph

i and gph

j . However,
for estimating the dependence of the integrals (6) on the
electric potential, one may assume that the dependence of
the densities of states on the arguments (E − E0 + qϕi or

E − E0 + qϕj) is weaker than that of nph

i and nph

j . The
band-density of states g(E) does not depend on the electric
potential. It may be approximated by that of free space, this
yielding g2(E) ∝ E. The remaining factors θi, θj appearing
within Fij , being related to the conservation of momentum
of the electron-phonon interaction, are independent of the
arguments E −E0 + q ϕi or E −E0 + q ϕj . The dependence
of the transmission coefficient Tij on E, ϕ is calculated by
assuming a rectangular barrier as anticipated.
Finally, the band-occupation fraction α(E) is described by
a Fermi statistics where the Fermi level is replaced with
the local quasi-Fermi level Eni, Enj . In the macroscopic
analyses carried out by TCAD simulators, the quasi-Fermi
level is available because it is extracted from the carrier
concentration and the electric potential. As Eni and Enj are
close to each other, the product α(E,Eni) [1−α(E,Enj)] has
a peak at Eav = (Eni + Enj)/2 and an area of the order of
kB TL, with TL the lattice temperature: to obtain an analytical
approximation of (6), such a product is approximated with
kB TL δ(E − Eav), to yield

S0+

ij = ν0+

ij

[
Tij n

ph

i (nph

j + 1)
]
Eav

,

S0+

ji = ν0+

ji

[
Tji n

ph

j (nph

i + 1)
]
Eav

, (7)

with
ν0+

ij = ν0+

ji = ζijkBTL

(
gph

i gph

j g2

)
Eav

, (8)

the attempt-to-escape frequency (ζij = 2 Ē tP θiθj is inde-
pendent of TL). The normalized probability per unit time
S0+

ij /ν
0+

ij calculated from (7) is shown on the right scale
of Fig. 2 as a function of the energy difference q (ϕi − ϕj)
between two adjacent traps, for a barrier whose thickness is 4
nm. The calculation has been carried out by fixing ϕj = 0. It
follows that nph

j becomes a constant; also, when ϕi → 0 the
barrier encountered by the electron in the i → j transition
increases. The transmission coefficient Tij is drawn in the
same figure on the left scale. The parameters have been
calibrated to obtain both the real-exponential behavior of Tij ,
corresponding to q ϕi < 2 (U0 − Eav), and the oscillatory
behavior, corresponding to q ϕi > 2 (U0 − Eav). It is found
that S0+

ij /ν
0+

ij has a peak near the transition between the real-
exponential and the oscillatory behavior of Tij . Its fast drop
on the right of the peak is due to the vanishing behavior of
nph

i = 1/{exp[(Eav − E0 + q ϕi)/(kBT )]− 1}, that prevails
over the oscillatory behavior of Tij . In turn, the form of the
left side of the peak is due to the competition between the
decreasing exponential within nph

i and the increasing one that
is present within Tij as long as q ϕi < 2 (U0 − Eav). The
same quantities as in Fig. 2 are reported in Fig. 3 for different
barrier thicknesses and, respectively, in Fig. 4 for different
lattice temperatures.

IV. CONCLUSION

Eqs. (6), along with the expression of Fij , provide the first-
principle derivation of the coefficients of the master equation
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Fig. 3. The same plot as in Fig. 2 at different values of the barrier thickness,
with TL = 300K.

for the current (1) in terms of the local potential ϕ, traps’
properties, and other parameters. In turn, (7,8) provide a
closed-form simplification of (6) suitable for implementation
into Monte Carlo or TCAD device simulators. The behavior
of S0+

ij differs substantially from that of [4], as shown by
Fig. 5 that reports the normalized probability per unit time
calculated with (7) and (2). In fact, in (2) the effect of the local
potential disappears when ϕj > ϕi, namely, the probability of
a phonon emission that brings the electron into the destination
site equals unity; also, the real-exponential dependence on rij
used in (2) is correct only in a specific range of the final
energy E of an absorption event. The model proposed in
this paper does not suffer from the above limitations: both
the absorption and emission probabilities are considered, and
the propagation at constant energy is accounted for by the
transmission coefficient Tij in both the real-exponential and
oscillatory cases.
Coupling (1) with the Poisson equation, and using the potential
ϕi and the fraction αi of filled traps as unknowns, makes the
model applicable to both Monte Carlo analyses and standard
TCAD codes for device design.
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Fig. 4. The same plot as in Fig. 2 at different temperatures. The barrier
thickness is 4 nm.
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