
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Simulated device structure. Solid lines in hexagonal grid indicate 
interaction region (channel) and dotted lines indicate the semi-infinite 
leads. The shaded stripe corresponds to unit cell in the y dimension. 
Along the x-dimension, the unit cells are labeled as 1, 2… N within the 
interaction/channel region from left to right. The two gate electrodes 
above and below the interaction region are omitted here.   
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Abstract—A simulation tool for modeling superfluid quantum 
transport in the proposed Bilayer Psuedo-spin Field Effect 
Transistor (BiSFET) and related systems is described and 
demonstrated. An interlayer Fock exchange interaction is 
incorporated into a -orbital based atomistic tight-binding model 
of transport in two graphene layers separated by a tunnel 
barrier. Simulation results support and extend expectations 
based on bulk analysis such as superfluid condensate formation, 
enhanced interlayer tunneling and the sub-thermal voltage (sub-
kBT/q) switching. Extension of this method to other quasi-two 
dimensional material systems should be possible as well. 
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I.  INTRODUCTION 
The Bilayer pseudoSpin Field-Effect Transistor (BiSFET) 

is a novel “beyond CMOS device” concept based on the 
interlayer, electron-hole exciton condensates in two graphene 
layers [1]. It has been proposed that superfluid exciton 
condensates between n-type and p-type graphene layers 
separated by a tunnel dielectric, supported by interlayer many-
body exchange interactions, could survive up to room 
temperature due to a synergy of graphene properties [2,3]. 
Such condensate formation, in turn, could provide novel 
transport effects such as enhanced interlayer tunneling and 
near perfect “Coulomb drag” [4-6]. The interlayer tunneling, 
however, can only be enhanced up to a “critical current” Ic and 
corresponding interlayer “critical voltage” Vc, much like in 
Josephson junctions and for similar reasons [5-8]. In principle, 
Vc can be lower than the thermal voltage kBT/q, which is 
approximately 26 mV at T = 300 K. Consequently, it is 
possible to envision ultra-low voltage switching devices based 
on this effect, e.g., the BiSFET. Switching energies of tens of 
zepto Joules (~ 1020 J) could be possible for the BiSFET with a 
(clocked) supply voltage ~ 25 mV [1], orders of magnitude 
less switching energy than “end-of-roadmap” CMOS.  

The goal of this work is to allow first-principle simulation 
of basic transport behavior that might occur in the presence of 
such a condensate, although not to judge the precise 
conditions under which a condensate might be formed as in 
[3]. Here we describe a -orbital-based atomistic tight-binding 
quantum transport simulator including a non-local interlayer 
Fock exchange interaction that allows simulation of the 

predicted novel transport effects. Illustrative simulations 
include the demonstration of a sub-kBT/q value of Vc. 

II. SIMULATED DEVICE STRUCTURE 
We consider a four-terminal configuration for generality as 

Fig. 1. (The BiSFET requires only two contacts, e.g., top-left 
(T1) and bottom left (B1).) Two crystallographically aligned 
graphene layers are coupled within a region of effective 
dielectric  = 2.2 including perhaps partial vacuums in the 
vicinity of the condensate region, above or below [3]. In the 
proposed BiSFET structure, the carrier concentrations would 
be controlled independently via two gate electrodes. In these 
simulations, the two layers are simply presumed to be gated to 
electrostatic potentials of VT = –VB = 0.25 V, corresponding to 
n = p  6×1012/cm2 in equilibrium with EF = 0 eV. The 
exchange interaction is limited to the “interaction region”—
starting with Unit Cell 1 and ending with Unit Cell N in Fig. 
1—of length L in these simulations. Physically, the boundaries 
of the interaction region could be defined (less abruptly) by 
variations in the carrier densities, dielectric constants and/or 
layer separation. The voltages in the four semi-infinite leads, 
Vi, can be biased independently. The graphene layers are taken 
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to be infinitely wide (y-dimension). In all simulations, the 
interlayer spacing d = 1 nm and the temperature T = 300 K. 

III. BASIC FORMALISM 

A. Tight-binding Schrödinger’s Equation with Fock Exchange 
The tight-binding Hartree-Fock Schrödinger’s equation in 

the bottom (B) layer is  

                                                                                                (1) 

and vice versa for the top (T) layer, where: HTB describes the 
nearest neighbor intra-layer and bare/single-particle interlayer 
coupling; VB(T) is the electrostatic potential; β is the combined 
state index indicating injecting lead α, energy band γ, energy 
E, transvers crystal momentum ky, and (real) spin s; r denotes 
atom locations within a specific row of atoms along the length 
of the device (shaded gray regions in the hexagonal lattices of 
Fig. 1); and R denotes atom locations throughout the graphene 
layers. The interlayer Fock interaction is,  

(2) 

where fβ is the Fermi occupation probability for state β as 
defined by the Fermi levels, EF,i = –qVi, and temperature. 
Given the periodicity in the transverse (y) direction, Eqs. (1) 
and (2) can be rewritten as 

                                                                                                (3) 

and                                                                                          (4) 

respectively, where ωy = kyay is the phase difference between 
adjacent primitive cells in the y direction, and n is an integer. 

B. Boundary Conditions 
In matrix notation, we may write the transport problem as 

 (5) 

where: H is the Hamiltonia square matrix;  is the wave-
function column matrix which spans the entire simulation 
region; S is the source term, and has nonzero components only 
at the simulation region boundaries;  is the self-energy 
required to provide perfect boundary absorption of outgoing 
waves. (Eq. (5) is equivalent to the the non-equlibrium Greens 
Function calculation              where                            , except 
that we do not need the full Green’s function G.)  

 H can be subdivided into 8×8 submatrices Hj,l for coupling 
within (j=l) and between (j l) the eight-atom unit cells along 
the simulation region. Similarly,  can be subdivided into 
1×8 vectors spanning each unit cell ,m. Thinking of the 
boundary values of  as just the sum of reflection (r) and—in 
general, nonzero in only leads—incident (i) waves,  = ,i + 

,r, we may write for the left simulation region boundary for 
specificity:  

         (6) 

Moreover, ,r,0 may be determined from ,1 and ,i,0 as,     

 (7) 

where the 8×8 matrix Pi,01 (Pr,10) propagates the incident 
(reflection) wave-function one unit cell across the simulation 
region boundary. If, e.g., i,0 is an incident Bloch function in 
one left-side lead with x-directed crystal momentum kx, then 
Pi,01 i,0 =        i,0. Substituing (7) back into (6) gives,    

(8) 

allowing the self-energy to be identified as 1,1 = –H10Pr,10 and 
the source as S1 = H1,0(Pr,10Pi,01 – I) i,0. Similary N,N =           
–HN,N+1Pr,N,N+1 and SN = HN,N+1(Pr,N,N+1Pi,N+1,N – I) i,N+1.  All 
other matrix components j,l and Sm are zero. 

IV. NUMERICAL APPROACH 
Superfluid condensate formation is characterized by a self-

consistent exchange interaction and gap formation; the 
stronger the coupling between layers, the greater the 
coherence, the greater the exchange interaction and associated 
band gap [2,8]. We employ an iterative method to solve this 
self-consistent quantum transport-Fock exchange problem, 
conceptually much as used to obtain self-consistent solutions 
of the quantum transport-Poisson equations, except that the 
Fock interaction is highly non-local in position. This non-
locality increases the computational challenge substantially 
and parallel computing is used to speed up calculations.  

However, for each iteration, the transport problem can be 
subdivided by energy and ky, and the Fock interaction can be 
analyzed as non-local only in position along the channel 
(within the shade gray regions of Fig. 1 again) consistent with 
Eq. (4).  Moreover,  Eq. (4) can be rewritten as,  

                 (9) 

where                                                                                    (10)               

depends only on rB – rT and ωy – ωy and can be pre-calculated. 
(Also, C(rB,rT;ωy,ωy ) = C*(rT,rB;ωy,ωy ) = C*(rB,rT;ωy ,ωy) 
allowing memory space to be saved as needed). For a given 
iteration, differing CPUs are used to calculate the differing 
wave-functions  via Eq. 5, and then to calculate the differing 
new Fock contributions                 via Eq. (9), which is 
repeated with the new Fock exchange interaction until 
convergence—or lack thereof as to be discussed below—is 
established.  

 The condensate is created by states within the vicinity of 
the associated band gaps [7]. Here we consider an injected 
energy range of ± 1.5 eV about the equilibrium Fermi level, 
which has been proved more than enough. Also, the range of 
the Fock interaction is generally < 5 nm, allowing rB – rT and 
n to be restricted. Finally, because different (real) spins do not 
interact, we simulated only one, and then doubled properties 
such as local density of states and current to include the other.    

V. RESULTS AND DISCUSSION 

A. Condensate Formation 
As noted earlier, condensate formation is characterized by 

a self-consistently enhanced exchange interaction and 
formation of an associated band gap [2].  To monitor the 

( ) ( ) ( ) ( ) ( )BTTBFockBBBTB
T

, rRRrrr
R

ϕ=ϕ+ϕ−ϕ EVqVH

( ) ( ) ( )
β

βββ ϕϕ
−πε

−= T
*

B
TB

2

TBFock 4
, Rr

Rr
Rr fqV

( ) ( ) ( ) ( ) ( )BTBFock,BBBTB
T

y
, rrrrrr

r
T ϕ=ϕ+ϕ−ϕ ω EAqVH

( ) ( ) ω
ω +=

n

inenVA y

y yTBFockTBFock, ,, arrrr

( ) ( ) ( ) ( )
ω γα

βββω ϕϕωω=
' ,,','

T
*

'B''yyTBTBFock,
y

y
',;,,

s'E'
fCA rrrrrr

( ) ( )−

−−πε
−=ωω

n

ine
n

qC '

yTB

2

yyTB
yy

4
',;,

arr
rr

[ ] SHI =−− ϕE

GS=ϕ [ ] 1−
β −−= HIG E

( )TB rr ,
yFock,ωA

( ) ,1,212,111r,0,i,0,10 ϕϕϕϕϕ β=+++ EHHH

( ) ( )i,0,i,01,1r,10i,1,,1r,10r,1,r,10r,0, ϕϕϕϕϕϕ PPPP −=−==

xx aike

( ) ( ) i,0,i,01r,1010,212,1r,101011 ϕϕϕ IPPHHPHIH −=++− βE

421



-1 0 10

1

2

3

-1 0 1 -1 0 1

(c)(b)

  

A-B hopping, L = 5 nm
Vhop = 10 meV

(a)

A-B hopping, L = 10 nm
Vhop = 10 meV

  

A-B hopping, L = 15 nm
Vhop = 10 meV

  

 

-1 0 10

1

2

3

-1 0 1

A-B hopping, L = 20 nm
Vhop = 10 meV

  

(e)(d)

A-A hopping, L = 15 nm
Vhop = 10 meV

 

 
Fig. 2. The local density of states in the center of the channel for Vhop = 10 
meV with varying channel length. Red (gray in the black & white printouts) 
curves for top band and black curves for bottom band. Unperturbed LDOS is 
plotted in scattered points. 
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Fig. 3. Averaged transmission coefficient T(E) for electrons incident in leads
B1 and T1 under equilibrium conditions with Vhop = 1 meV. Results absent the 
exchange interaction and associated condensate are plotted in (a) for 
reference, and with the exchange interaction and condensate in (b). 

condensate formation, we calculated the local density of states 
(LDOS). Fig. 2 shows the LDOS as a function of energy at the 
center of interaction/channel region for varying channel 
lengths and interlayer bare coupling patterns, along with the 
exchange-free result for comparison. A substantial, if still 
incompletely formed, band gap has formed in the center of the 
interaction region when L reaches 15 nm, as seen in the 
substantial drop in the LDOS over an energy range of 
approximately 200 meV around the Fermi level EF = 0 eV. 
The expulsion of the LDOS from the band gap is also 
evidenced by the spikes at the nominal “band edges”. Though 
incompletely formed, this ~ 200 meV gap is consistent with 
our bulk calculations with the same system parameters [7,8]. 
To form an effectively complete band gap, one would need 
quite long channels, which would be undesirable for device 
design as well as computationally expensive. As it turns out, 
the partial condensate formation for L = 15 nm is sufficient to 
exhibit the transport properties of interest here, and L = 15 nm 
is used henceforth.   

We also considered two representative forms of interlayer 
coupling, A-A hopping between only A sublattices on either 
layer, and A-B hopping. (The latter is Bernal-like but much 
weaker. However, the coupling is through a dielectric and not 
intrinsically Bernal-like.) Because A-B hopping is nearly 
orthogonal to the natural coupling pattern of the condensate, it 
is expected to be less effective at enhancing interlayer 
tunneling current than the A-A pattern [7, 8], as suggested by 
the differences in partial band-gaps shown in Fig. 2 (c) and 
(e). We consider only A-A hopping, henceforth.   

B. Enhanced Interlayer Transmission Probabilities 
We then calculated the average intra- and inter-layer 

transmission coefficients averaged across all incident states  
of the same lead at energy E, T(E), under equilibrium 
conditions, with an interlayer bare hopping energy of Vhop = 1 
meV, with and without the exchange interaction and 
associated condensate formation. The results for states 
incident in leads T1 and B1 (see Fig. 1 again) are plotted in 
Fig. 3. (Note that detailed balance is satisfied in all cases, but 
the averaged transmission probabilities T1 B1 and B1 T1 
need not be the same as a function of energy as there can be 
more carriers incident from one lead or the other at the same 

energy. However, upon inversion about E = 0 eV, the T(E) 
overlap again.) The interlayer transmission probabilities are 
greatly increased—over three orders of magnitude (top-right 
of Figs. 3(a) and (b))—in the presence of condensates. The 
peak interlayer transmission probability is around 80% (top-
right of Fig. 3(b)) which occurs near the center of the gap, 
with the corresponding intra-layer transmission damped to 
almost zero (bottom-left of Fig. 3(b)).  These results suggest 
that in the low-voltage Laudauer-Büttiker limit, the top and 
bottom layers are nearly shorted together on the same ends by 
condensate formation, while opposite ends of the channel are 
strongly isolated. 

C. Non-equilibrium Transport 
We first discuss qualitatively expected behavior. To aid the 

discussion, we note that the “which-layer” degree of freedom 
can be referred to as the “pseudospin” analogous to real spin, 
where the condensates are viewed as coherent pseudospin 
states with a corresponding pseudospin phase. (This 
terminology is the origin of the BiSFET moniker.) Moreover, 
although we do not make this assumption in our transport 
calculations, we note that the pseudospin phase relation 
between layers is expected to be a roughly global function for 
this collective many-body state [7,8]. Analogous to current 
between two points/orbitals in any tight-binding calculation, 
current flow requires that the product of the interlayer pseudo-
spin (condensate) and the interlayer coupling/hopping 
potential have an imaginary component. However, in the 
above global phase approximation, pseudospin phase is 
inherently opposite to the phase of the Fock exchange 
interaction between any two points (see Eq. (2)), so that the 
product is real and the exchange interaction alone cannot carry 
any interlayer current Iil. Instead, Iil depends on the imaginary 
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Fig. 4. Starting form equilibrium solutions, the pseudospin rotation 
(specifically between A atoms on opposite layers at the center of the 
interaction/channel region) are shown as a function of iteration number under 
the condition of: (a) Vhop = 0.5 meV and Vil = 5 mV, (b) Vhop = 0.5 meV and 
Vil = 10 mV, (c) Vhop = 0.5 meV and Vil = 20 mV, and (d) Vhop = 0.5 meV and 
Vhop = 100 mV from left to right respectively. (a) and (b) are consistent with 
stable DC behavior below a critical voltage; (c) and (d) are consistent with 
the collapse of DC behavior and unstable oscillatory behavior beyond a 
critical voltage.  In particular, (c) illustrates that the critical voltage can be 
less than the thermal voltage kBT/q  26 mV in these 300 K simulations. 

component of product of the pseudospin (the condensate) and 
the bare coupling. Therefore, for a given pseudospin 
magnitude (condensate strength) and real bare coupling, there 
should be a maximum DC value of Iil, the critical current Ic, 
that can flow between layers which is reached when the 
pseudospin phase reaches ± /2 radians [7,8]. That is, the 
interlayer voltage Vil can continue to increase beyond the 
associated critical voltage Vc, but the DC value of Iil cannot. 
Instead, beyond Vc, the pseudospin is expected to rotate in 
time, at a rate proportional to Vil (at about 250 GHz per meV) 
producing an oscillating interlayer current Iil even with fixed 
Vil. These expectations are analogous in both behavior and 
cause to the well-known DC and AC Josephson effects 
abruptly separated by a critical voltage.  

To study the non-equilibrium transport properties here, we 
applied an interlayer voltage Vil to the left-end contacts 
between the layers such that EF,T1 = – EF,B1 = –qVil/2 and EF,T2 
= EF,B2 = 0 eV. The current and exchange interactions were 
calculated self-consistently. The electrostatic potential were 
held fixed to V = ±0.25 V, but we note that the carrier 
concentrations were only weakly perturbed for the Vil  kBT/q 
of importance here.   

As shown in Fig. 4(a)-(c), the two predicted limiting 
behaviors are observed as a function of Vil for fixed Vhop. For 
(a) Vhop = 0.5 meV and Vil = 5 mV, and (b) Vhop = 0.5 meV, Vil 
= 10 mV, a stable-self-consistent solution is found with Iil  76 
and 152 A/ m, respectively. In contrast, for Vhop = 0.5 meV 
and Vil = 20 meV, while pseudospin (condensate) remains 
strong throughout the iterative simulation procedure, no stable 
solution is found. Instead, the pseudospin continues to rotate 
with iteration. With Vil increased to 100 mV to produce faster 
(less computationally expensive) rotation with iteration, the 
never-ending pattern of phase rotation, suggestive of time-
dependent oscillations, becomes more overt in Fig. 4(d). 
Critically, we note that for these simulations, a Vc less than 20 
mV—approximately 11 mV based on the extrapolation of the 
sine of the pseudo-spin phase with Vil to unity (pseudospin 

phase to /2)—illustrates the possibility of sub-kBT/q critical 
voltages that underlie the proposed ultra-low-power BiSFET 
device concept. Indeed, there is nothing in these simulations 
which suggests that Vc could not be reduced arbitrarily with 
reduction in Vhop independent of temperature.  

VI. CONCLUSION 
We have described and demonstrated a simulation tool for 

modeling superfluid quantum transport in the proposed 
Bilayer psuedo-Spin Field Effect Transistor (BiSFET) and 
related systems. An interlayer Fock exchange interaction is 
incorporated into a -orbital based atomistic tight-binding 
model of transport in two graphene layers separated by a 
tunnel barrier. Simulation results are consistent with previous 
bulk equilibrium-based predictions of superfluid condensate 
formation, associated enhanced interlayer tunneling and the 
sub-thermal voltage (sub-kBT/q) critical voltages, and, thus, 
possible sub-kBT/q switching, which collectively serve as the 
basis for the proposed BiSFET device concept for ultra-low-
power switching.   

The four-terminal device structure considered here, which 
has two more leads than the proposed BiSFET, also will allow 
investigation of other biasing conditions, such as the “drag-
counterflow” biasing condition expected to produce near-
perfect Coulomb drag between layers up to significantly 
higher voltages [5,6]. 

Finally, we note that the basic numerical method allows 
consideration of other tight-binding Hamiltonians and, thus, 
other quasi-two dimensional material systems. 
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