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Abstract—The Wigner equation represents a convenient ap-
proach when it comes to simulate the transient behavior of a
wave packet at a nanoscale regime. It is a full quantum model
that can include phonon scattering terms. A two-dimensional
Monte Carlo technique has been recently implemented which is
based on particles sign. In this paper we show that this is an
efficient approach which works in realistic time-dependent and
multi-dimensional situations.

I. INTRODUCTION

The quantum phenomena inherent for nanometer systems

are as a rule complemented with decoherence processes of

phase breaking and energy dissipation caused by the en-

vironment. Such mixed transport regimes are conveniently

described by the Wigner-Boltzmann (WB) formalism, which

seamlessly approaches the classical limit, if decoherence pro-

cesses begin to dominate. Indeed, as shown in [1], scattering

strives to destroy the effect of the high order potential deriva-

tives retaining only the electric field. The main challenges

encountered in the implementation of the Wigner-Boltzmann

formalism consist in the quantum component of the equation.

Several approaches such as Wigner trajectories [2] and paths

[3], the affinity method [4], [5], and the particle sign method

[6] have been proposed. All of them reuse basic classical

transport notions, but yet present limitations in one aspect

or another and can not reach the viability and efficiency of

the classical Monte Carlo models in particular: In the particle

affinity method a real number assigned to the particles of

an ensemble carries the quantum information of the system.

This method has shown to be succesful for general time-

dependent transport problems in realistic devices. However

numerical issues related to the number of individual particles

in the ensemble restricts the application to one-dimensional

(1D) geometries. The particle sign model is a single particle

approach, based on the ergodicity of the system. Signed parti-

cles generated by the Wigner potential reside on phase space

points of generation, waiting to be consecutively evolved to the

boundary. If an evolving particle meets a resident counterpart

with opposite sign, both particles can annihilate each other.

This method associates to the electron-potential interaction a

clear heuristic picture, but is restricted to stationary transport

determined by the boundary conditions.

In order to develop a general purpose approach, one may,

eventually, combine some compatible ideas from this variety

of concepts. In this paper we present a two-dimensional (2D)

implementation of a new Wigner Monte Carlo approach,

which is based on the concept of particle signs. This new

method exploits the concepts of momentum quantization and

indistinguishable particles. These concepts, proper to quantum

mechanics, entangled with the classical notions of trajectories,

particle ensemble, and particle-with-sign generation give rise

to a time-dependent, multi-dimensional, full quantum trans-

port model which includes both open and closed boundary

conditions along with general initial conditions. The method,

quantitatively validated in 1D benchmark problems including a

comparison with the Schrödinger solution is now examined for

2D transport problems. We focus on qualitatively transparent

physical phenomena allowing to analyze the numerical behav-

ior. The main conclusion is that the method does not require

special computational resources, thus making the implemen-

tation of quantum particle TCAD tools a reachable goal.

II. MODEL

According to one seminal consequence of quantum mechan-

ics, the energy of particles is discretized and comes in quanta.

The k-space is then naturally expressed in terms of a finite

quantity Δk = π
LC

(which imposes cellular automata rules

[7]), where LC = (L
x
C , L

y
C) is known as the coherence length.

Thus, the Wigner equation can be expressed in terms of semi-

discrete quantities and reads:

∂fW (x,M, t)

∂t
+

h̄MΔk

m∗
· ∇xfW (x,M, t) =

+∞∑
m=−∞

VW (x,M−m, t)fW (x,m, t) (1)

In this case the Wigner potential also becomes semi-

discrete:

VW (x,MΔk) = (2)

1

ih̄

1

LC

+
LC
2∫

−
LC
2

dx′e−i2MΔk·x′(
V (x+ x

′)− V (x− x
′)
)

In contrast to the semi-classical picture where particles are

described in terms of continuous quantities, particles momenta

are now described in terms of integer multiples n of a quantity

Δk. The problem is reformulated as a Fredholm integral

equation of second kind, where the free term naturally includes

general (open and closed) boundary conditions and initial

conditions. The kernel of the equation Γ

Γ = V +(t, r,n− n
′)− V −(t, r,n′ − n) + γ(t, r)δn,n′ (3)

V + = max
(
Vw, 0

)
; V −(n) = V +(−n); γ =

∑
n

V +

(4)

Vw(t, r,n) =
1

h̄L

∫ L/2

−L/2

sin(2nΔks) (ΔV (t, r± s)) ds (5)
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offers the following stochastic picture of the interaction with

the Wigner potential: An initial particle with sign a at n

Boltzmann
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Wigner, VB = 0.05 eV
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Wigner, VB = 0.15 eV
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Fig. 1. Gaussian wave packet interacting with a perpendicular potential barrier
at 30fs. Top: Boltzmann evolution. Middle and Bottom: Wigner evolutions
with a potential barrier equal to 0.05eV and 0.15eV respectively.

generates, with a rate V +(l) = V −(−l), two primary particles

with signs a, −a and momenta

n
′ = n+ l; n

′ = n− l (6)

The initial particle does not feel the interaction and continues

its evolution until time T . The created pair, in turn, generates

new pairs, etc., and the number of particles increases exponen-

tially. In order to keep the particle generation under control, we

use the following strategy: At time T all K particles provide

information about the mean value

〈A〉 =
∑
k

A(rk(T ),nk)sign(k), (7)

where A is a generic physical quantity and rk(T ) is the

position of the k-th particle over the Newton trajectory ini-

tialized by the phase space point, sign and time of birth. Two

particles k and k′ with opposite sign and equal n do not

have a net contribution in the limit rk(T ) → rk′(T ), thus,

they annihilate. The Markovian dynamics allows to evolve

at consecutive time steps ΔT , when a renormalization by

annihilation is performed by recording on a phase space grid.

This procedure keeps the particle avalanche under control.

We note the fieldless character of the evolution: The electric

field is incorporated into the Wigner potential. In this way

the dynamics of the system is entirely expressed in terms of

creation and annihilation of particles.
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Fig. 2. Two-dimensional representation of the Gamma function in 1/sec.

III. NUMERICAL EXPERIMENTS

The simulator used to obtain the results presented in this

section is a modified version of Archimedes, the GNU package

for the simulation of carrier transport in semiconductor devices

[8]. The code, known as nano-archimedes, implements two

different parallelized algorithms. On one hand, the calculation

of the Wigner potential, which consists of a set of nested loops,

is spread among the available CPUs and the parallelization per-

formance is almost ideal. This is obtained by using the parallel

library OpenMP which represents a standard in the parallel

coding community. On the other hand, the ensemble Monte

Carlo particles are divided into subsets that are distributed

among the available CPUs. The code is written in such a way

that it can run both on a common personal computer (PC)
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and on available clusters. For example, a typical simulation

ran on our cluster [9], using 4 CPUs and less than 8 Gbytes

takes about 2 hours. On a common PC with an Intel Core i5

processor a typical simulation will take about 10 hours.

We simulate three different instances of a 2D Gaussian wave

packet moving against a potential barrier. The barrier is formed

between the interface of a potential step and the absorbing

boundary of the simulation domain. The interface is indicated

in the figures by a line or a surface, in order to visualize

the effects of tunneling and absorption by the boundaries. In

the first case, the initial wave vector is perpendicular to the

barrier, the evolution time is fixed, and we compare the process

of tunneling with different barrier heights with the reference

frame given by a hardwall reflection from the interface. In the

second case, the initial wave vector is again perpendicular with

respect to the barrier and the time evolution of the reflection

and tunneling processes are followed. The third case is like

the second one, but a parallel component of the initial wave

vector is added. These three experiments can be reduced to

a set of one-dimensional problems giving rise to a physically

clear picture of the simulated processes. On the other side the

numerical experiments represent genuine multi-dimensional

arangements, so that any deviation of the physically expected

behaviour will indicate numerical problems. We focus on the

numerical feasibility of the 2D approach. For all experiments,

the initial conditions consist of a Gaussian wave packet and

read

f0
W (x,M) = Ne−

(x−x0)
2

σ2 e−(MΔk−k0)
2σ2

(8)

where N , k0, x0 and σ are, respectively, a constant of

normalization, the initial wave vector, the initial position, and

the width of the wave packet. which is fixed to 10nm. The

initial energy of the wave packet of about 0.025eV is always

smaller than the interface energy. Fig.1 shows the evolution

of an initial Gaussian wave packet that goes perpendicular

to the barrier at 30fs. The top plot represents a Gaussian

wave packet which, following a Boltzmann evolution, bounces

back from the interface by a specular reflection. The time

is chosen in such a way that half of the initial particles

have been already scattered by the interface. We note the

spherical symmetry of the task in the lower half of the plot.

The plots below correspond to a Wigner evolution so that

the tunneling under the 0.05eV and 0.15eV high barriers is

well pronounced. According to the physical picture the lateral

components should not be affected by the independent process

in normal direction and thus spread as in the Boltzmann case.

The penetration under the barrier causes a deformation of the

wave packet, which should reduce the spherical symmetry to

a symmetry with respect to the vertical line in the center of

the plot. This is exactly what happens with the behaviour

of the Wigner density in the bottom two plots, which show

that the numerical aspects of the 2D implementation are in

accordance with the phenomenological picture. Two other

peculiarities follow the same line: The increase of the potential

reduces the tunneling so that the 0.15eV case is closer to

the Boltzmann counterpart. This, however, holds for the upper
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Fig. 3. Initial wave vector perpendicular to the potential barrier: Evolution
of a 2D Gaussian wave packet at time 1fs, 80fs and 150fs respectively.

parts of the plots: At the bottom we observe a larger spread

of the reflected waves with the increase of the barrier height.

This is related to the fact that the quantum interaction is non-

local and begins earlier in the sense that its magnitude spreads

further away from the interface with the increase of the height.

One can observe in the plots the magnitude of the electron-
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Fig. 4. Initial wave vector oblique to the potential barrier: Evolution of a
2D Gaussian wave packet at time 1fs, 80fs and 150fs respectively.

potential interaction quantity γ (see Fig. 2), which furthermore

manifests the 2D character of the particle generation process.

Fig. 3 shows three different times of the evolution process

corresponding to an interaction with a 0.05eV barrier and the

right boundary. The initial wave packet (top plot) approaches

the barrier. It is partially transmitted and partially absorbed by

the barrier at 80fs (middle plot). Finally at 150fs (bottom plot)

the tunneling part of the wave packet reaches the absorbing

boundaries. This is indicated by the light-blue hump, whose

smoothness and magnitude well demonstrates the precision of

the stochastic approach. The same is true on the left boundary,

reached by the bounced packet after 150fs, as can be seen in

the bottom plot. This experiment is used as a reference for

the next one, where we add a lateral component to the initial

condition, cf. Fig. 4. From a phenomenological point of view

this is equivalent of looking at Fig. 3 from a moving coordinate

frame, so that the corresponding plots should be translationally

equivalent. From a numerical point of view this is a very

different 2D experiment due to the entirely different sequence

of generation of particles in the four-dimensional phase space.

Nevertheless the numerical picture is in accordance with the

phenomenological one. Finally the bottom plot shows that the

two absorbing boundaries do not influence the smoothness of

the solution.

From all reported results, we can conclude that the method

is not only effective but also efficient and can be applied to

realistic and technologically relevant situations as it will be

shown elsewhere.
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