A Hybrid Spin-charge Mixed-mode Simulation Framework for Evaluating STT-MRAM Bit-cells Utilizing Multiferroic Tunnel Junctions

Xuanyao Fong and Kaushik Roy
School of Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana 47907
Email: {xfong, kaushik}@ecn.purdue.edu

Abstract—Multiferroic tunnel junctions (MFTJs) consisting of ferromagnetic contacts sandwiching a ferroelectric tunnel barrier have been proposed as possible data storage elements. However, a simulation framework is needed for evaluating and analyzing the design and performance of memory cells based on MFTJs. In this paper, we propose a spin-charge mixed-mode simulation framework that captures the device physics of the MFTJ for SPICE circuit simulations.

I. INTRODUCTION

The emergence of spin-transfer torque MRAM (STT-MRAM) as a strong candidate for future universal memory technology (due to its non-volatility, compatibility with CMOS technology, scalability and reasonably high performance [1]) has led to significant research interest. However, STT-MRAM bit-cells suffer from conflicting design requirements for reading from and writing to the cell [2]. The tunneling magnetoresistance is used for sensing data stored in STT-MRAM bit-cells. The MTJ consists of a pinned and a free magnetic layer (PL and FL, respectively) sandwiching a tunnel barrier. MTJ conductance depends on the relative magnetization of PL and FL, and is switched between high and low conductance in STT-MRAM by manipulating FL magnetization. Analysis of 1T-1MTJ STT-MRAM bit-cells show that sensing failures may severely limit the bit-cell area and failure probability [3]. Enhancing the tunneling magnetoresistance effect may improve the sensing failure probability of STT-MRAM bit-cells. Replacing the tunnel barrier in an MTJ with a ferroelectric tunnel barrier (FTB) allows modulation of the tunneling conductance through the tunneling electroresistance (TER) effect [4], which may be used to enhance the tunneling magnetoresistance ratio (TMR) of the tunnel junction (TJ) and improve sensing failures in STT-MRAM memory cells. However, a simulation framework that captures both tunneling electroresistance and tunneling magnetoresistance effects is needed to evaluate the effectiveness of magnetic ferroelectric tunnel junctions (MFTJs) on improving STT-MRAM sensing failure. This paper presents a mixed-mode simulation framework that captures both effects in the device for circuit level simulations. The rest of this paper is organized as follows. Section II describes our proposed simulation framework. The MFTJ structure analyzed using our proposed simulation framework is then presented in Section III. Finally, Section IV discusses the simulation results and Section V concludes this paper.

II. PROPOSED SIMULATION FRAMEWORK

Our proposed simulation framework (Fig. 1) consists of 1) a Landau-Lifshitz-Gilbert (LLG) model for capturing magnetization dynamics, 2) a Landau-Khalatnikov (LK) dynamical ferroelectric model, 3) a Non-Equilibrium Green’s Function (NEGF) formalism based solver for electron transport, and 4) a SPICE compatible circuit model for MFTJ.

A. Landau-Lifshitz-Gilbert (LLG) Model

Magnetization dynamics of the FL affect the MFTJ resistance (H_{MFTJ}) and needs to be modeled in order to properly describe MFTJ dynamics during switching. In scaled STT-MRAM technology, the FL can be approximated as a mono-domain magnet. Magnetization dynamics of a mono-domain magnet is obtained by solving the Landau-Lifshitz-Gilbert (LLG) equation shown as (1). γ is the gyromagnetic ratio, α is the Gilbert damping factor, is the magnetization vector of the nano-magnet, H_{EFF} is the effective magnetic field on the nano-magnet and STT is the spin torque term which will be discussed in Section II-C.

$$\frac{d\mathbf{m}}{dt} = \gamma \gamma^* \mathbf{m} \times \mathbf{H}_{\text{EXT}} + \alpha \mathbf{m} \times \left(\mathbf{H}_{\text{DIP}} + \mathbf{H}_{\text{DEMAG}} + \mathbf{H}_{\text{STT}} \right)$$

Fig. 1. Flow chart of our proposed simulation framework.
volume of FL, respectively (and $E_A = K_{\mu_2} V$). Anisotropies of nano-magnets with in-plane anisotropy (IMA) may be modeled using (3), whereas anisotropies of nano-magnets with perpendicular magnetic anisotropy (PMA) may be modeled using (4) [5]. In an STT-MRAM array where there are many nano-magnets, the dipolar coupling between nano-magnets may be captured using (5), where for the i-th nano-magnet, \vec{r}_{i}^F is the vector from the nano-magnet to FL, \hat{m}_i describes its magnetization direction, and μ_r is the relative permeability of the material in which all nano-magnets and FL are buried in. Temperature effects as prescribed by Brown are captured in (6), where the components of ξ are independent Gaussian random variables. k_B is the Boltzmann constant and T is the absolute temperature.

B. Landau-Khalatnikov (LK) Model

Dynamics of ferroelectric polarization is described by the Landau-Khalatnikov equation [6] as in (7), where $F\left(\hat{P}\right)$ is the free energy functional of the ferroelectric material, and α_0 is a proportionality constant. In our model, $F\left(\hat{P}\right)$ is written as (8), where $F_0\left(\hat{P}\right)$ describes the ferroelectric anisotropy, α_1 is a proportionality constant, and \vec{E} is the external electric field applied across the ferroelectric.

C. Non-Equilibrium Green’s Function (NEGF) Method

The Non-Equilibrium Green’s Function (NEGF) formalism [7] is used to calculate the $I-V$ characteristic of the MFTJ, which is used in the SPICE circuit model of the MFTJ for circuit simulations. The NEGF formalism may also be used to calculate the spin torque acting on the free layer (FL) of the MFTJ when solving for the magnetization dynamics of FL.

D. SPICE Compatible Dynamical MFTJ Model

The components of our SPICE compatible dynamical MFTJ model are shown in Fig. 3. The $I-V$ characteristics of the MFTJ returned by our NEGF solver are encapsulated in (27), where Φ_{MFTJ} is the effective electron mass in region l, and a is the uniform lattice spacing used for numerical calculation. The spin-dependent part is written as in (17), where \mathcal{S} represents the Pauli spin matrices, and \hat{m} and Δ are the magnetization direction and the conduction band splitting of up-spins and down-spins at the lattice point, respectively. The barrier height of the tunnel barrier (U_D) is included in U_{OX} as in (18), while the voltage applied across the MFTJ (V_{MFTJ}) is modeled using U_{APP} as in (19). The effect of ferroelectric polarization in the tunneling barrier is modeled using (20)-(22), where δ_l and ϵ_l are the Thomas-Fermi screening length and relative permittivity of electrode l, respectively. Finally, the current density flowing through the MFTJ (J_{MFTJ}) can be calculated using (25). However, J_{MFTJ} depends on the relative angle between PL and FL, and on the polarization of the ferroelectric tunnel barrier (P). In our model, the dependence of J_{MFTJ} on P is decoupled. Hence, for a fixed P, $J_{\text{MFTJ}}(\theta)$ can be calculated using (26), where $J_P = J_{\text{MFTJ}}(\theta = 0)$ and $J_{\text{AP}} = J_{\text{MFTJ}}(\theta = \pi)$. $J_{\text{MFTJ}}(P)$ may then be written as (27), where c_i are fitting parameters (different for $+P$ and for P) since P modulates the effective barrier height [4].
4.5ns and 5.5ns, and are in good agreement with experimental as shown in Fig. 5. Results showed switching times between 4.5ns and 5.5ns, respectively. The definition of (c) standard and (d) reversed cell connections are also shown.

3.1 Equations Used In Our Proposed Simulation Framework

\[\begin{align*}
\text{LLG:} & \quad \frac{\partial \mathbf{m}}{\partial t} = -\gamma |\mathbf{m}| \times \mathbf{H}_{\text{EFF}} + \alpha \left(\frac{\partial \mathbf{m}}{\partial t} \right) + \text{STT} (1) \quad \mathbf{H}_{\text{EFF}} = \mathbf{H}_{\text{UNI}} + \mathbf{H}_{\text{EXT}} + \mathbf{H}_{\text{DEMAG}} + \mathbf{H}_{\text{DIP}} + \mathbf{H}_{\text{TH}} (2) \\
\ni \text{In-plane anisotropy:} & \quad \mathbf{H}_{\text{UNI}} + \mathbf{H}_{\text{DEMAG}} = \frac{2K_{\text{u1}}}{M_{\text{S}}} \mathbf{m}_Z - 4\pi M_{\text{S}} \mathbf{m}_Z (5) \\
\i \text{Perpendicular anisotropy:} & \quad \mathbf{H}_{\text{UNI}} + \mathbf{H}_{\text{DEMAG}} = \left(\frac{2K_{\text{u2}}}{M_{\text{S}}} - 4\pi M_{\text{S}} \right) \mathbf{m}_Z (6) \\
\mathbf{∇} \cdot \mathbf{H} & = \frac{\partial \mathbf{S}}{\partial t} (3) \\
\mathbf{H}_{\text{TH}} & = \mathbf{g} \sqrt{\frac{\mathbf{S}_{\text{TT}}}{{\text{STT}}} \mathbf{P}} - \mathbf{a} \mathbf{E} \cdot \mathbf{P} (8) \\
\end{align*} \]

\[\begin{align*}
\text{NEGF:} & \quad \mathcal{H} = \mathcal{H}_0 + \mathcal{H}_C + \mathcal{H}_{\text{APP}} + \mathcal{H}_{\text{ER}} + \mathcal{H}_{\text{OX}} (9) \quad t_i = \frac{k^2}{2m^*} (10) \quad t_i(k_i) = \frac{\delta^2}{m^*} (11) \quad \alpha_{\text{L}} = 2t_i(k_i) (12) \quad \alpha_{\text{INT},l} = 0.5(\alpha_{\text{INT},l} + \alpha_{\text{OX}}) (13) \\
\mathcal{H}_{\text{0(i,i)}} & = \begin{cases}
\alpha_{\text{L}} I & \text{if } i < N_L \\
\alpha_{\text{OX}} I & \text{if } N_L < i < N_R \\
\alpha_{\text{R}} I & \text{if } i > N_R \\
\alpha_{\text{INT},l} I & \text{if } i = N_L \text{ for } I = L, R \\
0 & \text{otherwise}
\end{cases} (14) \quad \mathcal{H}_{\text{0(i,i+1)}} = \begin{cases}
-t_I I & \text{if } i < N_L \\
t_{\text{OX}} I & \text{if } N_L < i < N_R \\
t_I I & \text{if } i > N_R \\
-t_{\text{OX}} I & \text{if } i = N_L \text{ for } I = L, R \\
0 & \text{otherwise}
\end{cases} (15) \quad \mathcal{H}_{\text{0(i,i+1)}} = 0.5(1 - \mathcal{H}_{\text{0(i,i+1)}}) \Delta (16) \quad \mathcal{H}_{\text{0(i,i+1)}} = 0.5(1 - \mathcal{H}_{\text{0(i,i+1)}}) \Delta (17) \\
U_{\text{OX}(i,i)} & = \begin{cases}
U_B I & \text{if } i < N_L \text{ or } N_R < i < N_L \\
0.5U_B I & \text{if } i = N_L \text{ or } N_R \text{ or } i < N_L \text{ or } N_R \\
I & \text{otherwise}
\end{cases} (18) \quad U_{\text{APP}(i,i)} = \begin{cases}
0.5U_{\text{MFTJ}} I & \text{if } i < N_L \\
-0.5U_{\text{MFTJ}} I & \text{if } i > N_R \\
I & \text{otherwise}
\end{cases} (19) \quad \phi_{i,j} = \begin{cases}
\phi_{i-1,j} - \phi_{i-1,j-1} & \text{if } i \geq N_L \\
0 & \text{otherwise} \end{cases} (20) \quad \phi_{i,j} = \begin{cases}
\phi_{i-1,j} - \phi_{i-1,j-1} & \text{if } i < N_L \\
0 & \text{otherwise} \end{cases} (21) \quad \phi_{i,j} = \begin{cases}
\phi_{i-1,j} - \phi_{i-1,j-1} & \text{if } i < N_L \\
0 & \text{otherwise} \end{cases} (22) \\
G = [\mathcal{E} I - \mathcal{H}_C - \mathcal{H}_C]^{-1} (23) \quad \Gamma_i = \left[\mathcal{H}_C - \mathcal{H}_C \right]^{-1} (24) \quad J_{\text{MFTJ}} = q \left(-\mathcal{E} \cdot \mathbf{V}_{\text{MFTJ}} G_{\text{GFM}} G_{\text{FMC}} \mathbf{G}_{\text{MFTJ}} \right) (25) \\
\mathbf{S}_{\text{STT}} & = \frac{\frac{q}{T}}{\mathbf{G}_{\text{MFTJ}}} (26) \quad \mathbf{S}_{\text{STT}} = \frac{n_i}{\mathbf{G}_{\text{MFTJ}}} + \frac{T}{\mathbf{G}_{\text{MFTJ}}} d\mathbf{V} \cdot \mathbf{J}_S (28) \\
\mathbf{J}_S & = \frac{d\mathbf{E} \cdot \mathbf{V}_{\text{MFTJ}}}{d\mathbf{G}_{\text{MFTJ}}} \left(\begin{array}{c}
\mathcal{E} I_n \mathbf{G}_{\text{MFTJ}} G_{\text{FMC}} G_{\text{MFTJ}} \end{array} \right) (29) \quad \mathbf{S}_{\text{STT}} = \frac{1}{\mathcal{E} I_n \mathbf{G}_{\text{MFTJ}} G_{\text{FMC}} G_{\text{MFTJ}}} (n_i \mathbf{G}_{\text{MFTJ}} G_{\text{FMC}} G_{\text{MFTJ}}) (30) \quad \mathbf{p} = \frac{\mathcal{E} I_n \mathbf{G}_{\text{MFTJ}} G_{\text{FMC}} G_{\text{MFTJ}}}{\mathcal{E} I_n \mathbf{G}_{\text{MFTJ}} G_{\text{FMC}} G_{\text{MFTJ}}} (31) \\
q_{\mathbf{L}} & = \mathbf{P}_{\mathbf{L}} \mathbf{A}_{\mathbf{L}}^2 + \mathbf{P}_{\mathbf{L}} \mathbf{A}_{\mathbf{L}}^2 + \mathbf{P}_{\mathbf{L}} \mathbf{A}_{\mathbf{L}}^2 (32) \quad A_{\mathbf{L}} = \sqrt{\mathbf{A}_{\mathbf{L}}^2 + \mathbf{A}_{\mathbf{L}}^2} (33) \quad A_{\mathbf{L}}^2 = \frac{\mathbf{A}_{\mathbf{L}}^2 \mathbf{A}_{\mathbf{L}}^2}{4 + \mathbf{A}_{\mathbf{L}}^2} (34)
\end{align*} \]

Fig. 4. Successful calibration of our NEGF solver to experimental data reported (left) in [9] and (right) in [5].

E. Model Calibration

Our models are first calibrated to experimental data published in the literature before simulation. Since no experimental data on MFTJ is available (to the authors’ best knowledge), our models were calibrated to MTJ measurements in [5], [9], [10] instead. Calibration results of our NEGF solver as shown in Fig. 4 shows our model and experimental data are in good agreement. Our LLG solver was calibrated to [10] as shown in Fig. 5. Results showed switching times between 4.5ns and 5.5ns, and are in good agreement with experimental data published in [10].

III. THE MULTIFERROIC TUNNEL JUNCTION (MFTJ)

The MFTJ structure (Fig. 6) consists of two ferromagnetic electrodes sandwiching an FTB. Ferromagnetic configuration of the MFTJ is switched using spin-transfer torque like in MTJ-based STT-MRAM. The current directions for antiparallelizing (I_p) and for parallelizing (I_f) the FL are shown in Fig. 6. Since the FTB is very thin, the electric field in the tunnel barrier during write operations may be sufficient to switch the FTB polarization when current is being passed through MFTJ to switch its FL magnetization. Hence, two configurations of ferroic properties exist in the structure as shown in Fig. 6. The remnant polarization in the FTB and nonzero screening lengths in the ferromagnetic electrodes result in a small TER effect as illustrated by the band diagrams in Fig. 2. The effective potential along the transport direction of the MFTJ is such that the barrier height is larger when FTB polarization points toward the electrode with the larger screening length. Although the TER effect is small when FTB is thin, it may be sufficient to enhance the TMR of the MFTJ and hence, reduce sensing failures in STT-MRAM.

![Fig. 4](image-url) Successful calibration of our NEGF model to experimental data reported in [10]. Worst case switching times for (a) Antiparallel to parallel and (b) parallel to antiparallel switching were 4.5ns and 5.5ns, respectively. The definition of (c) standard and (d) reversed cell connections are also shown.
IV. SIMULATION RESULTS

We investigated an MFTJ by adding ferroelectric polarization to the MTJ from our calibration steps. The ferroelectric polarization versus electric field hysteresis curve and the ferromagnetic parameters assumed for the MFTJ are shown in Fig. 7 (t_{OX} in the MFTJ case is the equivalent MTJ t_{OX}). \mathbf{P} is assumed to be pointing along the direction of electron transport. Device level TMR versus oxide voltage were calculated in our NEGF solver and plotted in Fig. 8, showing that the TMR of the MFTJ is 7.2% higher than that of the MTJ. However, the TMR of the MFTJ based STT-MRAM memory cell is only 4.7% higher than MTJ based STT-MRAM (assuming 900nm wide access transistor), implying that transistor resistance significantly affects TMR of the memory cell. Although the FTB enhanced the TMR of MFTJ based STT-MRAM, the overall resistance of the memory cell is also higher than that of MTJ based STT-MRAM. Consequently, read disturb current through the MFTJ based STT-MRAM is 0.3\μA lower than in MTJ based STT-MRAM. Read disturb failures are thus lower in MFTJ based STT-MRAM than in MTJ based STT-MRAM. On the other hand, due to the larger resistance, MFTJ based STT-MRAM requires a write voltage of 0.973V compared to 0.971V in MTJ based STT-MRAM (considering 10% write margin, where write margin = $I_{W \text{MFTJ}}-I_{C0} \times 100\%$).

V. CONCLUSION

We presented a hybrid spin-charge mixed-mode simulation framework for MFTJ based STT-MRAM. Our proposed simulation framework allows self-consistent solution of NEGF, LLG, and LK equations for SPICE simulation of STT-MRAM memory cells. Simulation results show that MFTJ based STT-MRAM memory cells can have slightly higher ($\sim 5\%$) higher TMR and lower read disturb failures as compared to MTJ based STT-MRAM memory cells. However, MFTJ based STT-MRAM memory cells require a higher write voltage as MFTJ resistance is higher compared to MTJ based STT-MRAM.

ACKNOWLEDGMENT

This work was supported in part by StarNET, a Semiconductor Research Corporation project sponsored by MARCO and DARPA, by the Semiconductor Research Corporation, and by Intel Corporation.

REFERENCES