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Abstract—In polar semiconductors with intensive electron–
optical-phonon interaction excess energy of non-equilibrium
(hot) electrons, supplied by the external electric field, is trans-
ferred to longitudinal optical (LO) phonons. LO phonons are
displaced from equilibrium with the thermal bath, and hot-
phonon effects take place. The kinetics of such a non-equilibrium
electron/optical-phonon system is described by two coupled non-
linear Boltzmann-type equations for the non-equilibrium electron
and LO phonon distribution functions. Here, to our knowledge
for the first time, we present a spherical harmonics expansion
(SHE) method for the coupled system for electrons and LO
phonons. The nonlinear system of coupled equations is solved
with a Gummel type iterative scheme and the Newton-Raphson
method. Simulation results are verified against a Monte Carlo
model and good agreement is obtained. Hot phonon effects
increase the mean energy of electrons and decrease the drift
velocity.

I. INTRODUCTION

Non-equilibrium distributions of quasi-particles can be rel-
atively easy induced in semiconductor materials under the
action of external electric fields or optical excitation [1]. The
energy obtained by the electrons from an external excitation is
transferred via lattice vibrations to the remote heat sink. Hot
electron scattering by acoustic phonons is almost elastic and
excess electron energy is mainly dissipated through the emis-
sion of optical phonons. The spectrum of generated optical
phonons is defined by energy and momentum conservation
during the electron-phonon scattering event. The occupation of
phonon modes in those parts of the Brillouin zone, where the
electron-phonon interaction is strongest, is displaced from the
equilibrium Bose distribution. The electronically active non-
equilibrium phonons are called hot phonons.

The influence of hot phonons on steady state electron
transport under strong external electrical fields is widely
investigated [1], [2]. Hot phonons are recognized as the main
reason of slow energy relaxation of photoexcited electrons in
AlGaAs/GaAs quantum wells [3]. During the last decade the
influence of hot phonons on high frequency performance of
GaN-based heterostructure field-effect transistors (HEMT’s)
was intensively investigated. The buildup of non-equilibrium
phonons accelerates degradation of power devices, and limits
the high frequency performance of transistors [4], [5].

The standard approach of theoretical treatment for such a
coupled hot-electron–hot-phonon system is the Monte Carlo
method [6], [7]. It is fast in implementation and requires
no assumptions on the form of the distribution functions.

However, the main disadvantage of the Monte Carlo method
hides in it’s transient and stochastic nature: it takes prohibitive
amounts of computational time to achieve results within rea-
sonable accuracy in case of low currents in the device or in
systems with different time scales. To overcome this difficulty
deterministic methods are used [8], [9].

II. THEORY

The kinetics of the non-equilibrium electron/optical-phonon
system is described by two coupled nonlinear Boltzmann-type
equations for the electron f(�k, t) and optical phonon n(�q, t)
distribution functions. The kinetic equation for the electron
distribution function has the form:

∂f(�k, t)

∂t
−

e

h̄
�E∇kf(�k, t) + Ik[f ] + Π

(lo)
k [f, n] = 0, (1)

here e is the positive electron charge, h̄ the Planck con-
stant, �E the applied electric field, operator Ik[f ] describes
the electron interaction (scattering) with acoustic phonons,
and operator Π(lo)

k [f, n] the electron interaction (scattering)
with non-equilibrium longitudinal optical phonons. The kinetic
equation for the optical-phonon distribution function has the
form:

∂n(�q, t)

∂t
+ I(th)q [n] + Π(el)

q [n, f ] = 0, (2)

where the operator I(th)q [n] represents decay of the optical
phonons into other modes of crystal lattice vibrations (thermal
bath), and Π

(el)
q [n, f ] describes phonon net generation by

electrons. The coupling is introduced through the optical
phonon scattering term in the electron Boltzmann equation,
and the optical phonon net generation rate by electrons in
the Boltzmann equation for phonons. We proceed with the
investigation of the stationary system and the time derivatives
in (1), (2) are skipped.

The deterministic solver discussed in the present paper is
based on the spherical harmonics expansion method [10].
The electron distribution function is expanded on equienergy
surfaces and the generalized electron distribution function is
introduced:

g(ε, θk) =
∑
l

gl(ε)Yl(θk) = f(ε, θk)Zel(ε), (3)

where Zel(ε) = 2/(2π)
3k2dk/dε is the (reduced) density of

states for electrons, and Yl(θk) the l-th spherical harmonic
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assuming rotational symmetry w.r.t. the electric field. The
electron transport equation (1) is expanded in the same way
as the distribution function and balance equations for the
coefficients gl(ε) are obtained. The expansion in spherical
harmonics of the drift term in (1) is described in [10].

The scattering term of the Boltzmann transport equation
consists of two parts, out-scattering and in-scattering:

Π
(lo)
k [f, n] =

V0

(2π)3

∑
ν

∫
{W ν

out(n,
�k, �k′)f(�k) (4)

−W ν
in(n,

�k′,�k)f(�k′)}d3k′.

Here summation is performed over different scattering mech-
anisms W ν(n,�k, �k′). Expansion in spherical harmonics of
elastic scattering by acoustic phonons is described in [8],
and we will focus on expansion of polar optical scattering in
case of a non-equilibrium phonon distribution. In general, the
optical phonon scattering rate can be expressed as the product
of the interaction function Cν(n, ε, ε′, θk, θk′) and Dirac delta
function for energy conservation:

W ν(n,�k, �k′) = Cν(n, ε, ε′, θk, θk′)δ(ε−ε′∓h̄w(ε, ε′, θk, θk′)).
(5)

The upper sign stands for phonon emission and the lower for
absorption. In case of scattering by longitudinal polar optical
phonons in III-V semiconductors, usually the cubic approxi-
mation is used. Phonons are assumed to be dispersionless with
constant energy h̄w0. The interaction function is anisotropic:

Cν(n, ε, ε′, θk, θk′) = C0
1

q2

[
n(�q) +

1

2
±
1

2

]
. (6)

Here C0 is the interaction constant. In our case phonons are
assumed to be driven out of equilibrium, and the phonon
distribution function depends on the phonon wave-vector. For
the sake of brevity we will discuss only phonon absorption and
the case of phonon emission is similar. After the expansion
of the generalized electron and phonon distribution functions
in spherical harmonics, the income term for LO phonon
absorption is expressed as:

Sll′

in (ε) =
1

2
Zel(ε)C0

∑
r

Kll′r
in (ε, ε− h̄w0), (7)

with:

Kll′r
in (ε, ε′) =

∫ ∫
nr(q)

q2
Yl(θk)Yl′(θk′)Yr(θq)dΩkdΩk′ ,

(8)
where nr(q) is r-th spherical harmonic of the phonon distri-
bution function. For the outcome term we get:

Sll′

out(ε) =
1

2
Zel(ε+ h̄w0)C0

∑
r

Kll′r
out (ε, ε+ h̄w0), (9)

with:

Kll′r
out (ε, ε

′) =

∫ ∫
nr(q)

q2
Yl(θk)Yl′(θk)Yr(θq)dΩkdΩk′ .

(10)

Fig. 1. Relative error of the electron drift velocity versus the number of
iterations: closed rectangles- Gummel type iterations, open rectangles- Newton
method.

The spherical harmonics expansion of the scattering term for
the electron Boltzmann transport equation is given by:

∑
l′

Sll′

out(ε)gl′(ε)−
∑
l′

Sll′

in (ε)gl′(ε− h̄w0). (11)

The Boltzmann equation for the LO-phonon distribution
is usually solved in the relaxation time approximation under
assumption of dispersionless LO phonons with zero group
velocity:

Π(th)
q [n] =

n(�q)− neq

τph
. (12)

Here neq stands for the equilibrium Bose distribution with the
lattice temperature (temperature of the thermal bath), and τph
is the non-equilibrium phonon decay time. Coupling with the
electron system is expressed as:

Π(el)
q [n, f ] = 2

∑
�k

[
Wabs(n,�k, �q)−Wem(n,�k, �q)

]
f(�k),

(13)
where Wabs(n,�k, �q) stands for optical phonon absorption by
electrons (phonon annihilation) and Wem(n,�k, �q) for optical
phonon emission by electrons (phonon generation); and both
depend on the phonon distribution function.

After the expansion of the phonon transport equation
into spherical harmonics and introduction of the generalized
phonon distribution function:

p(q, θq) =
∑
r

pr(q)Yr(θq) = n(q, θq)Zph(q), (14)

with Zph(q) = q2/(2π)3, we get for the relaxation term:

pr(q)− p0eqδr,0

τph
, (15)

with p0eq = Y0peq.
The coupling term (13) consists of two parts: phonon

annihilation (absorption) and generation (emission). After ex-
pansion of both generalized distribution functions (3), (14),
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(a)

(b)

Fig. 2. Zeroth (a) and first (b) order harmonics of the electron distribution
function for GaN at 10 kV/cm. Solid line- SHE results with hot phonons;
dashed line- SHE results with equilibrium phonons; symbols- Monte Carlo
simulation with hot phonons.

the absorption term is expressed as:

Ar(q) = C0
mel

h̄2q3

∑
l,r′

∫
∞

0

1

k
gl(ε)pr′(q)Ilrr′(ε, q)dε, (16)

with:

Ilrr′(ε, q) =

∫
δ

(
cos(θkq)−

q

2k
−

melw0

h̄kq

)
(17)

× Yl(θk)Yr(θq)Yr′(θq)dΩkdΩq.

For the emission term a similar expression can be obtained.
The box integration method is used to discretize the balance
equations for gl(ε) and pr(q). In case of the electron transport
equation a staggered grid is used.

III. MODEL AND RESULTS

As a model system, bulk wurtzite GaN at 300 K lattice
temperature is selected, where the longitudinal optical (LO)
phonon energy is high and electron–LO-phonon interaction is
intense at high electric fields. Electron distribution functions
and transport parameters are calculated within the one-valley

(a)

(b)

Fig. 3. Zeroth (a) and first (b) order harmonics of the phonon distribution
function for GaN. 10 kV/cm: solid line- SHE results, open circles- Monte
Carlo data; 2 kV/cm: dashed line- SHE results, and open triangles- Monte
Carlo data. Dash-dotted line shows the equilibrium distribution.

spherical parabolic conduction band approximation.
In the range of electric fields under investigation electron

scattering into the upper valleys is expected to be negligi-
ble. 1018cm−3 electron gas density is considered, and 1 ps
LO phonon lifetime is used. Acoustic phonon scattering via
deformation potential and LO phonon polar scattering (cubic
approximation) are taken into account. The electron effective
mass and scattering parameters are the same as in [11]. Eight
spherical harmonics are considered for electrons and two for
phonons.

The system of equations describing the non-equilibrium
electron/optical-phonon system is nonlinear in electron scat-
tering due to the LO phonon term in (1) and phonon net
generation by electrons in (2). To obtain a solution of such
a nonlinear system of equations, iterative schemes should be
used. We have implemented both the Gummel type iterative
scheme and the full Newton-Raphson method.

In the Gummel scheme first the Boltzmann transport equa-
tion for electrons is solved using the equilibrium phonon
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Fig. 4. The time dependent electron drift velocity for the first 4 ps of electron
motion in GaN at 10 kV/cm: open circles stand for Monte Carlo data with
equilibrium phonons and closed circles with hot phonons. Lines represent
stationary values obtained by the SHE solver.

distribution. the resultant electron distribution is used to
calculate the net phonon generation and from it the new
phonon distribution. The new phonon distribution is used again
in the electron transport equation and subsequent iterations
yield the final self-consistent solutions for the electron and
phonon distribution functions. In addition, a Newton-Raphson
method for the full system of coupled nonlinear equations has
been implemented. Fig. 1 shows the convergence behavior for
both methods. In case of the full Newton-Raphson method
quadratic convergence is obtained and three or four iterations
are sufficient to achieve convergence (Fig. 1, open squares).

Semiclassical ensemble Monte Carlo simulation [7] is
performed for the wurtzite GaN using the same material
parameters, band structure and scattering mechanisms to verify
the results of the spherical harmonics solver. The Monte
Carlo procedure takes into account each LO-phonon gen-
eration/annihilation event due to their interaction with the
electrons (LO phonon emission/absorption). The resultant his-
togram is used to calculate the non-equilibrium (hot) phonon
distribution. Figure 2 presents zeroth (a) and first (b) order
harmonics of the electron distribution function, and Figure
3 for the LO phonon distribution. Good agreement with
Monte Carlo results is obtained for both zeroth and first order
harmonics of the electron distribution function. Hot phonon
effects increase the mean energy of the system and decrease
the drift velocity (solid and dashed lines in Fig. 2 and Fig. 4).

The stronger the applied electric field is, the bigger is
the displacement of the phonon distribution from equilibrium
(compare solid, dashed and dash-dotted lines in Fig. 3). Good
agreement with Monte Carlo results is obtained for both zeroth
and first order harmonics of the phonon distribution function at
2 kV/cm electric field. The discrepancy between Monte Carlo
and SHE results for the phonon distribution at 10 kV/cm may
be attributed to stronger anisotropy of the distribution function
at a stronger electric field.

Figure 4 shows Monte Carlo simulation results for the

electron drift velocity during the first 4 ps of electron motion.
It takes 2.5 ps for the non-equilibrium phonon distribution
to build up and for the electron drift velocity to reach its
stationary value (closed circles in Fig. 4), whereas the SHE
simulator gives the stationary value of electron drift velocity
directly (solid line in Fig. 4).

IV. CONCLUSION

Spherical harmonics expansion method for the coupled
system for electrons and LO phonons is presented. In case
of the full Newton-Raphson method quadratic convergence
is obtained. Good agreement with a consistent Monte Carlo
model is obtained. Hot phonon effects increase the mean
energy of electrons and decrease the drift velocity.
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