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Abstract—We present a full Newton-Raphson approach for
solving the Poisson, Schrödinger and Boltzmann equations in a
deterministic framework with Fourier harmonics expansion for a
2D nanoscale device. The effects of the Schrödinger equation are
included via first order perturbation theory and prove to have a
significant impact. A comparison to the Gummel type iteration
scheme yields superiority of the full Newton-Raphson method
in convergence speed and solver time. The full Newton-Raphson
method is also of particular relevance to small-signal analyses in
this framework.

I. INTRODUCTION

In recent years, deterministic solvers for the Boltzmann
equation (BE) became increasingly popular as they do not suf-
fer from the inherent deficiencies of Monte Carlo simulations
with their inherently transient solutions and their stochastic na-
ture. Solving a set of equations deterministically also removes
the inability to simulate rare events or events that evolve on
very different time scales [1]. In device simulations, the usual
approach for deterministic solvers is to solve the BE together
with the Poisson equation (PE) in a Gummel type iteration,
similar to [2], until self-consistency is reached. In the case that
electron confinement is considered, the Schrödinger equation
(SE) is also solved within that loop until self-consistency of all
three equations is achieved as e.g. in [3]. Including the SE leads
to an indirect feedback of the PE to the BE as the potential only
enters the SE. Thus, a full Newton-Raphson method (FNRM)
to solve the PE and BE simultaneously is not straightforward
to carry out. However, the lack of a FNRM also obstructs
simulations of small-signal quantities [1]. In this work, we
present a FNRM for the coupled system of PE, SE and BE
for a two-dimensional electron gas, where the effects of the
SE are included via time-independent first order perturbation
theory.

II. APPROACH

In the following, we will consider a two-dimensional
device. The BE will be solved in y-direction (transport direc-
tion), while the SE will be solved in x-direction (confinement
direction). Throughout this work, we will assume that the
device is homogeneous in z-direction.

The basic notion of the FNRM for the PE, SE and BE
is to solve the PE and BE simultaneously while expressing
the change in the subband energies and wave functions as first
order perturbations of the potential. We will show how to set up
each equation adequately in dependence of the other equations.

A. The Schrödinger Equation

The stationary Schrödinger equation (see e.g. [4]) will be
solved in x-direction for all positions in y-direction. It reads(
− h̄2

2mv
x

∂2

∂x2
− qV (x, y)

)
Ψv,s(x, y) = εv,s(y) Ψv,s(x, y),

(1)

where mv
x is the valley dependent effective mass in confine-

ment direction, V (x, y) is the potential in the device, q is
the electron charge, εv,s(y) is the resulting energy eigenvalue
and Ψv,s(x, y) is the corresponding eigenfunction. The super-
script s denotes the principal quantum number, or subband.
The Dirichlet boundary conditions were chosen for the wave
function to vanish at the borders of the semiconductor region.

The structure of the SE as an eigenvalue problem prevents
us from including it directly into the FNRM. However, the
change in subband energies and wave functions due to a small
change in the potential can be expressed with time-independent
perturbation theory (see e.g. [4]). Assuming the Hamiltonian
of eq. (1) is perturbed by a small change in potential V →
V + δV , we can write down the first order correction to the
subband energies and wave functions for the non-degenerate
case:

δεv,s(y) = − q

∫
dx |Ψv,s(x, y)|2 δV (x, y),

δΨv,s(x, y) =

− q
∑
s′ �=s

∫
dx′Ψv,s′(x′, y) δV (x, y) Ψv,s(x′, y)

εv,s(y)− εv,s′(y)
Ψv,s′(x, y).

(2)

The correction for the wave function shows that all subband
energies and all wave functions of the unperturbed Hamiltonian
have to be known to achieve first order accuracy.
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B. The Boltzmann Equation

The stationary BE is greatly simplified by only considering
one-dimensional transport. Moreover, k-space is reduced to
two dimensions by solving the SE in confinement direction:

FBE :=
1

h̄
F v,s
y (y)

∂

∂ky
fv,s(y, ky, kz)

+ vy(ky, kz)
∂

∂y
fv,s(y, ky, kz)− S{f}

= 0,

where F v,s
y and vy are the force and group velocity in transport

direction, respectively, fv,s is the distribution function and
S{f} is the scattering term. We choose Neumann boundary
conditions and include a simple generation/recombination rate
proportional to a constant recombination velocity for each
contact [5].

In this semi-classical approach, we treat the kinetic en-
ergy as a classical quantity, while the quantized momentum
in confinement direction due to the SE generates a set of
minimum energies. Thus, the total energy for a given subband
is the sum of the respective quantized subband energy and
the classical kinetic energy. We use a simple parabolic band
structure according to the model of the Modena group [6].

We apply the Herring-Vogt transformation [7], the H-
transformation [8] and project onto equi-energy surfaces. We
also employ the Fourier harmonics expansion, which has
proved rather useful for the k-space in semiconductors. As
was shown in [1], after the box-integration in energy space
and real space, we obtain equations with a structure as

FBE
α = Dα(g, ε)− Sα(g, ε,Ψ),

where D is the free-streaming term, S is the scattering
term and g ≡ Zf is the ‘modified distribution function’
with the density of states Z. The index is a 5-tuple, α ∈
{(v, s, yi, Hj ,m)}, running over all valleys v, subbands s,
spatial grid points yi, energy grid points Hj in the H-
transformed energy space and Fourier harmonics m. The terms
Dα and Sα are indicated to depend on the subband energies,
while the latter also depends on the wave functions due to
the overlap integral of initial and final states. The crucial
aspect is that they do not explicitly depend on the potential
V . Furthermore, Sα depends non-linearly on g if the Pauli
principle is included.

C. The Poisson Equation

The Poisson equation is solved in 2D, considering only the
electrons. It is given by

FPE := ∇ · [κ(x, y)∇V (x, y)] + q[n(x, y)−ND] = 0,

where n(x, y) is the electron density, ND is the donator
concentration and κ(x, y) is the dielectric constant. We use
Dirichlet boundary conditions for the gate contacts and Neu-
mann boundary conditions everywhere else.

Discretization leads to a set of equations with a structure
as

FPE
a = La(V )−Ra(g, ε,Ψ),

where a ∈ {(xi, yj)} is a composite index of the spatial
dimensions, La represents the discretization of the differential
operators and Ra contains the charge density. Here, the
electron density was expressed as

n(x, y) = 2
√
2π

∑
v,s

μv

∫
dH gv,sm=0(y,H)|Ψv,s(x, y)|2,

where only the m = 0 harmonic of g contributes and μv is
the valley multiplicity [1]. Thus, the term Ra is dependent
on the subband energies and wave functions and it represents
the direct feedback from the BE to the PE. Note, that the
subband energies are the lower bounds of integration in the
H-transformed energy space.

D. Setting up the full Newton-Raphson method

The FNRM yields a linear system of equations

−FBE
α =

∑
β

∂FBE
α

∂gβ
δgβ +

∑
b

∂FBE
α

∂Vb
δVb,

−FPE
a =

∑
β

∂FPE
a

∂gβ
δgβ +

∑
b

∂FPE
a

∂Vb
δVb,

with the unknown variables δg and δV . After solving these
equations, g and V can be updated as

g(n+1)
α = g(n)α + δg(n)α ,

V (n+1)
a = V (n)

a + δV (n)
a ,

where the superscript (n) indicates the n-th iteration.

As noted earlier, the BE does not explicitly depend on
the potential but rather on the subband energies and wave
functions stemming from the SE. However, the FNRM requires
us to express the derivative ∂FBE

α /∂Vb in order to include the
feedback from the PE to the BE. To this end, we can rewrite
the derivative as

∂FBE
α

∂Vb
=

∑
u

∂FBE
α

∂εu

∂εu
∂Vb

+
∑
w

∂FBE
α

∂Ψw

∂Ψw

∂Vb
.

Again, the indices u ∈ {(v, s, yi)} and w ∈ {(v, s, xi, yj)}
are used as an abbreviation for their functions’ domains of
definition. The derivatives of the subband energies and wave
functions can be evaluated using the first order perturbation
theory of eq. (2):

∂εu
∂Vb

=
∂(δεu)

∂(δVb)
,

∂Ψw

∂Vb
=

∂(δΨw)

∂(δVb)
.

Handling the PE analogously, we obtain a set of equations
as

−FBE
α =

∑
β

[
∂Dα

∂gβ
− ∂Sα

∂gβ

]
δgβ −

∑
b,w

∂Sα
∂Ψw

∂Ψw

∂Vb
δVb

+
∑
b,u

[
∂Dα

∂εu
− ∂Sα

∂εu

]
∂εu
∂Vb

δVb,

−FPE
a = −

∑
β

∂Ra

∂gβ
δgβ +

∑
b

∂La

∂Vb
δVb

−
∑
b,u

∂Ra

∂εu

∂εu
∂Vb

δVb −
∑
b,w

∂Ra

∂Ψw

∂Ψw

∂Vb
δVb. (3)
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Fig. 1. Double gate nMOSFET with silicon channel. The shades in the
channel indicate the doping density ND .
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Fig. 2. Current IDS vs. gate voltage VGS with drain voltage VDS = 0.01V
(dashed line) and VDS = 0.7V (solid line).

Note, that this means that the derivative w.r.t. to the potential
of every term ocurring in the BE has to be taken, including all
the boxes of integration over H-space and the scattering term
with its overlap integral.

III. RESULTS

We investigated a two-dimensional double gate nMOSFET
with a silicon channel as shown in Fig. 1. For the following
simulations, we used an equidistant two-dimensional rectan-
gular grid with a gridpoint distance of 0.1nm and 0.5nm in
x- and y-direction, respectively.

The SE was solved for all subbands to obtain the correct
first order perturbation of the wave function as shown in
eq. (2). However, the subbands included in the BE were limited
to the 10 lowest ones. For the BE, we used a static H-grid with
a grid spacing of 5.24meV . The Fourier harmonics expansion
was truncated after the 13th harmonic as no significant changes
were observed beyond that order. The scattering term includes
intra-valley elastic acoustic phonon scattering and inter-valley
phonon scattering [1], while the Pauli principle was omitted.

To obtain feasible starting values for the FNRM we used a
PE-SE loop until self-consistency was reached and thereafter a
PE-SE-BE Gummel type iteration up to a predefined threshold,
where the FNRM solver took over. The SE was solved before
each FNRM iteration step to update the values of the subband
energies and wave functions.

The resulting drain-source current IDS vs. gate bias VGS

for a drain bias of VDS = 0.01V and VDS = 0.7V is shown
in Fig. 2. The electron densities integrated in confinement
direction for a few gate biases are depicted in Fig. 3.

The main aspect of this work is the comparison between the
presented FNRM with the more conservative approach using
a Gummel type iteration scheme to iterate over a PE-SE-BE-
loop where each equation is solved separately. We compared
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Fig. 3. Electron densities n integrated in direction perpendicular to transport
direction for VDS = 0.7V and VGS = −0.7V, −0.3V, 0V, 0.3V, 0.7V
(solid lines with adjacent values of the respective VGS) together with the
doping density ND (dashed line).
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Fig. 4. Total elapsed solver time for Full Newton-Raphson approach (solid
line) and Gummel type iteration (dashed line) for VDS = 0.7V .

the total elapsed solver time of both approaches for VDS =
0.7V and varying gate biases (see Fig. 4) and the number of
iterations necessary to achieve an error of less than 10−11V
in the potential (see Fig. 5). An iteration step with the FNRM
takes longer than an iteration step with the Gummel scheme.
However, the quadratic convergence of the FNRM leads to
a significant decrease in total solver time at high biases. At
VDS = 0.7V and VGS = 0.7V , the FNRM converges in only
17 steps while the Gummel scheme takes over 100 iterations.
This is due to the strong coupling of the BE and PE and while
in the Gummel Scheme the feedback has to propagate through
incremental changes of the starting values of each equation, the
FNRM includes the influence of the PE on the BE and vice
versa directly. The downside of the FNRM is its instability,
especially at high gate biases, and its tendency to diverge if
the starting values are not in the vicinity of the solution.

During an inspection of the convergence behavior regarding
the necessity of the derivatives w.r.t. to the subband energies
and wave functions of eq. (3), we found that omitting the
derivatives w.r.t. the wave functions in the BE has little effect
far away from the solution, however, in the vicinity of the
solution, the quadratic convergence is lost. In some cases
we observed the solver to be more stable due to the weaker
feedback. Omitting any of the other derivatives leads − in
all cases we tested − to a diverging system of equations.
Obviously, a combination of omittance of the derivatives w.r.t.
the wave functions far away from the solution to gain stability
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Fig. 5. Convergence given by the absolute change of the potential at each
iteration step for VGS = 0.3V, 0.5V, 0.7V (values indicated in figure) of full
Newton-Raphson approach (solid lines) and Gummel type iteration (dashed
lines) for VDS = 0.7V .
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Fig. 6. Convergence behavior with higher FNRM threshold of FNRM with all
derivatives (dotted line), without the derivatives of the wavefunction in the BE
(dashed line) and a combination of both (solid line) for VGS = 0.7V, VDS =
0.7V .

and inclusion of the wave functions in the vicinity of the
solution will yield the fastest convergence for those cases. In
Fig. 6, the convergence behaviors are shown. Here, the FNRM
threshold was chosen to be slightly higher to demonstrate the
instability of the FNRM far away from the solution.

IV. TOWARDS SMALL-SIGNAL ANALYSIS

The usefulness of the FNRM is limited in the context of
sole DC calculations as the amount of programming prowess
and time necessary to include all the derivatives correctly,
vastly surpasses the gains in solver time. However, with the
Gummel scheme, small-signal analysis is not manageable.
But having implemented the FNRM, it is easily incorporated.
Carrying out the linearization of the BE with a small AC
perturbation yields − apart from the time-derivative − the
very same equations as in eq. (3) with the l.h.s set to zero.
Dealing with the time-derivative requires some carefulness as
the H-grid depends on the subband energies which themselves
depend on time. Thus, the H-grid itself is time-dependent and
the time derivative in the BE takes the following form:

∂g(y,H(t), t)

∂t
=

∂g(y,H, t)

∂H

dH(t)

dt
+

∂g(y,H, t)

∂t
,
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Fig. 7. Absolute values of Y -parameters at 100GHz in common source
configuration. Top gate and bottom gate are short-circuited. Port 1 and 2 denote
gates vs. source and drain vs. source, respectively.

where on the r.h.s., as an argument of g, H is considered an
independent variable. Some preliminary results are shown in
Fig. 7.

V. CONCLUSION

We have shown that by using time-independent first order
perturbation theory a self-consistent quadratically converg-
ing full Newton-Raphson approach for the combined system
of Poisson, Schrödinger and Boltzmann equations can be
achieved. The full Newton-Raphson method is superior to
the Gummel type iteration scheme in convergence behavior
and total solver time. In addition we found that turning the
derivatives w.r.t. the wave functions in the Boltzmann equation
off has little effect far from the solution but − of course −
the quadratic convergence is lost. However, in some cases the
system becomes more stable. A working full Newton-Raphson
approach marks an important milestone on the way towards
small-signal analysis in this framework.
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