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Abstract—Proper understanding of the effects of parameter
variations in a circuit requires simulation; unfortunately, ac-
curate variation simulation can hinder simulation performance.
Even though the majority of interdie variations occur between
four parameters (L, W, tox, Vfb) [1], this parameter set is still
too big for efficient large-scale simulations. As these variations
all affect threshold voltage (Vtℎ), ΔVtℎ is often used as a
substitute for variations [2], [3]. While a ΔVtℎ substitute offers
vast improvement in runtime, it has a rarely-understood loss in
quality.

In this work, we demonstrate two methods that, when pre-
sented with a set of device variations (L, W , tox, Vfb) and a
model, can simplify those variations into a reusable model that
provides accelerated simulation. Our first method, approximate
ΔV𝑔s superposition, offers an accelerated method to reduce pro-
cess variations down a single, manageable ΔVtℎ-like parameter.

Our second, reduced parameter method, preserves the effects
of individual variations while lowering the runtime complexity.
Instead of generating device attributes specific to the tested
circuit, our method used a dynamic superposition approach to
interpolate device parameters from a reduced-dimension lookup
table.

Both of our methods demonstrate significant runtime compu-
tation savings, with a low break-even point as compared to the
original model. While the ΔV𝑔s approach does demonstrate a no-
ticeable quality loss compared to the original model, our reduced
parameter approach demonstrates minimal loss in quality.

Index Terms—Parameter variations, nanoscale, MOSFET

I. INTRODUCTION

To avoid costly manufacturing mistakes, variations’ effect
on circuit behavior is predicted before manufacture through
the use of simulation tools. Monte Carlo analysis, the most
frequently-used approach, generates a representative set via
random circuit simulations.

As Monte Carlo analysis suffers from slow convergence,
measures are used to accelerate the per-measurement cost of
simulation. Tabular representation of a model allows for fast
and reasonably accurate simulation, but is subject to a few
constraints. The granularity of the tabular data can restrict
the quality of interpolation; too few points and the underlying
characteristics could be lost. The parameter count plays a role
in both space and speed - as the number of table parameters
increases, the table size and the interpolation delay both grow
exponentially.

While a simple DC transistor model could be represented
by a two-dimension, gate voltage and drain voltage [Vgs,
Vds] table, such a table is inadequate for variations. For
interdie variations, every Monte Carlo run would require a
new transistor table that could be shared between identically-
sized transistors. Intradie variations would require a fresh table
for every transistor in each Monte Carlo run.

A threshold voltage (Vth) approximation of variations can
condense a model down to a simple [Vgs −ΔVth, Vds] table:
gate voltage Vgs and drain voltage Vds, with gate voltage
fluctuations according to the effect of variations on threshold
voltage ΔVth.

While the most frequent-used variation approximation is a
normal ΔVth distribution, others have developed approaches
to efficient representation of variations. Drennan et al. [3]
constructed a formula to calculate ΔVth from more basic vari-
ations. One additional avenue is a ΔIon/Ion mismatch model,
but with simplifications made either through a combination
of principal component/region-specific modeling [4] or Taylor
series expansion [5], [6].

In this work, we present two generalized methodologies
for parameter reduction. Via small-signal analysis and su-
perposition, we form a first-order, minimial-parameter ΔVgs
approximation of variations. Using improved techniques, we
demonstrate a second-order, “reduced parameter” method us-
ing dynamic superposition which offers greater accuracy dur-
ing circuit analysis with only a minor reduction in efficiency.

II. APPROXIMATE ΔVgs SUPERPOSITION

As the most frequently-used method for variation simulation
is a ΔVth approximation, a similar simplification method-
ology via a gate voltage shift (ΔVgs) definition (Fig. 1)
was sought as it allows current expression via a 2D shared
(I[Vgs − ΔVgs, Vds]) array. In the process, an accelerated
method to determine the ΔVgs distribution parameters (e.g.,
σVgs was achieved.

For two parameters to have an independent effect on the
output, their output covariance ought to be zero. For any given
parameter in which the relative variance (σ𝑥/μ𝑥) is small, the
covariance between that parameter and others on an output is
likely to be small. Furthermore, a small relative variance lets
us use small-signal analysis approximations to assume that the
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Fig. 1. Calculation of ΔV𝑔s via current matching techniques. The properties
of a transistor with variations - a single “instance” - are compared against
the nominal, variation-free transistor by observing the shift in gate voltage
required for the nominal transistor to match the current draw of the simulated
instance at the prescribed voltage (in this example, 0 V).

translation of a normal distribution to the output domain will
also be normal. To find the output variance, one must first
find the relationship between each parameter and the output,
and then combine their effects together via a convolution of
independent normal distributions.

First, the small-signal relationship between minute varia-
tions in a basic parameter (e.g., L) and an output measurement
(I) is determined from a first-order Taylor series approxima-
tion.

I(L+ ΔL) ≈ I(L) +
𝑑I

𝑑L
ΔL (1)

ΔI(ΔL) ≈ 𝑑I

𝑑L
ΔL (2)

Repeating the same procedure for ΔVgs and I can link
together ΔL’s effect on ΔVgs in terms of a slope factor
𝑚L→V gs.

ΔI =
𝑑I

𝑑L
ΔL =

𝑑I

𝑑V 𝑔𝑠
ΔVgs

ΔVgs =
𝑑Vgs
𝑑I

𝑑I

𝑑L
ΔL = 𝑚L→VgsΔL (3)

If one then assumes that the input variations are following
a normal distribution and have an independent effect on the
output, the output will also be normal. At a given critical point
IC , the variances are thereby additive.

σ2vgs ≈
[
𝑑Vgs
𝑑IC

𝑑IC
𝑑L

σL

]2
+

[
𝑑Vgs
𝑑IC

𝑑IC
𝑑W

σW

]2
+ ...

≈ (𝑚L→V gsσL)
2
+ (𝑚W→V gsσW )

2
+ ... (4)

III. REDUCED PARAMETER VIA DYNAMIC SUPERPOSITION

While the small-signal approach in Section II simplifies all
the variations to one parameter, it loses accuracy away from
the critical point IC . The relationship between parameters is
nonlinear, and as such, ΔVgs should not be normal.

TABLE I
NORMAL VARIABLE (x = μx + 𝜎x𝑧) TRANSLATIONS VS. STANDARD

NORMAL DISTRIBUTION TRANSLATIONS.

Variable Transform Standard Distribution Transform
y(x) = m x+ b y(𝑧) = μy +m 𝜎x𝑧

y(x) = m ln (x) + b y(𝑧) = μy +m ln
[
1 + σxz

μx

]

y(x) = m x 1 + b y(𝑧) = μy +m
[
(μx + 𝜎x𝑧)

1 + μ 1
x

]

y(x) = 𝑒m x+b y(𝑧) = μy𝑒m σxz

ds

(a)

gs

(b)

Fig. 2. Slope factors. The relationship between variations in L and tox (with
respect to I) changes based on the region of operation. Shown in terms of
(a) Vds and (b) V𝑔s with steps in V𝑔s and Vds, respectively.

The notion of independence is, however, a powerful means
for combining together parameters. If one can identify sets of
independent relationships, one can achieve variable reduction
through superposition while still preserving covariance when
it does occur.

Using Table I, one can see how some normal variable trans-
formations are modulation-based (e.g., follow the form y =
μy+𝑓(μ𝑥, σ𝑥)) while others use scaling (y = μy ⋅𝑓(μ𝑥, σ𝑥)).
For modulated random numbers, superposition of their effects
would yield a composite random number generator of the form

yC = μy + σy𝑧 + 𝑓𝑥(μ𝑥, σ𝑥) + ... (5)

In practice, this relationship between parameters is inconsis-
tent. While at any given point across the operation region [Vgs,
Vds] two parameters may be considered independent, the slope
factors 𝑚 from Table I will change. Figure 2 demonstrates
such an observed relationship. As such, a dynamic slope factor
𝑚 based on the region of operation is required.
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Fig. 3. SRAM static noise margins under hold conditions, shown in (a)
linear and (b) logarithmic scales.

yC = μy + σy𝑧 +𝑚𝑥→y[Vgs, Vds] ⋅ 𝑓𝑥(μ𝑥, σ𝑥) + ... (6)

While this dynamic nature disrupts the ability to describe
the composite generator by any particular distribution, simu-
lations do not require the distribution shape; only its random
variable generator.

Application of this approach to Pao-Sah’s double integral [7]
results in two sets of independent relationships: a trivial
relationship between V𝑓b and ΔVgs (σVgs = σV𝑓b), and a
composite, logarithmic-based one between W , L, and to𝑥 for
three standard normal random number generators (𝑧to𝑥, 𝑧L,
𝑧W ).

to𝑥C =μto𝑥 + σto𝑥𝑧to𝑥 +𝑚L→to𝑥[Vgs, Vds] ln

(
1 +

σL𝑧L
μL

)

+𝑚W→to𝑥[Vgs, Vds] ln

(
1 +

σW 𝑧W
μW

)
(7)

In doing so, the model’s current flow can be captured
by a two-level lookup table: first via the two-dimensional
slope matrices from Equation 7, and then a reduced, three-
dimensional shared matrix produces the correct current value.

I =Ids,nom[Vgs −ΔVgs, Vds, to𝑥C ] (8)

IV. CIRCUIT SIMULATION

To verify these simplified modeling techniques, we con-
structed a tool in C to accelerate calculation of Pao-Sah’s
Double Integral and to provide for netlist functionality. Using
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(b)

Fig. 4. SRAM read noise margins under read conditions, shown in (a) linear
and (b) logarithmic scales.

a 65nm feature size, we tested our models using a 6T SRAM
cell as well as a three-inverter ring oscillator.

The resource usage for several simulations are shown in
Table II. While both simplifications require precomputation to
generate the non-transistor-specific models, during simulation,
they require little to no per-circuit setup and only induce
a small performance overhead during the runtime loop.Our
implementation required about 10 MB of RAM for the 2D
ΔVgs model, but the reduced parameter method required
closer to 2 GB of ram due to the 3D lookup tables

For the SRAM cell, we tested hold static noise margin
(SNM) (Fig. 3), read SNM (Fig. 4), and access delay (Fig. 5).
As can be observed, the ΔVgs approach consistently showed
error across the SRAM attributes, while the reduced parameter
approach held closely to the golden model.

The ring oscillator was tested under normal (1.0 V) and low-
power (0.6 V) conditions (Fig. 6) to demonstrate the effects
of a varying supply voltage. While the ΔVgs parameter does
show error even under nominal conditions, it is exacerbated
under low-power conditions. Thanks to its point calibration
approach, the ΔVgs distribution holds far less accuracy in the
tail, while the reduced parameter’s dynamic nature consistently
holds close to the golden distribution.

The tail analysis of these two representative circuits demon-
strates an important note: using a ΔVgs simplification can
incur an important error during circuit simulation. However,
with our dynamic approach to interpolation, it is possible to
save processing resources while preserving quality.
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(b)

Fig. 5. SRAM access delay distribution, enhanced to demonstrate right
tail accuracy. (a) demonstrates the amount of time necessary to perform a
successful read (Vbl < 0.9 V ) while (b) demonstrates the time necessary to
perform a successful write (V𝑞 < 0.1 V ; V𝑞b > 0.9 V )

TABLE II
SIMULATION RUNTIME FOR 1000 CIRCUITS.

SRAM SNM SRAM Access Osc. period
Hold Read Read Write 1.0 V 0.6 V

Iterations/circuit 44.2k 33.4k 11.4k 76.2k 411k 176k
Golden Model
Setup (s) 1358 1357 1357 1356 1367 1364
Runtime (s) 83.2 62.2 33.3 267 1474 598
ΔV𝑔s Model
Precompute (s) 37.0 37.3 37.0 37.0 37.0 36.9
Setup (ms) 23.6 19.1 14.3 15.9 20.0 18.0
Runtime (s) 150 115 52.3 405 2177 1040
Circuit Speedup 9.6x 12.3x 26.6x 4.0x 1.3x 1.89x
Break-Even (ckts.) 28.6 28.6 27.5 30.3 55.6 40.0
Reduced Parameter Model
Precompute (s) 47.4 47.9 47.7 47.8 47.7 48.0
Setup (ms) 26.4 25.9 11.7 16.2 21.8 16.4
Runtime (s) 99.9 75.9 36.6 290 1617 650.4
Circuit Speedup 14.4x 18.7x 38.0x 5.6x 1.76x 3.02x
Break-Even (ckts.) 35.3 35.6 35.3 35.8 39.0 36.6

V. CONCLUSIONS

In this paper we presented two methods to reduce a physical
device model to allow for accelerated circuit simulation under
variations.

Our first method, a ΔVgs approach, demonstrates both
a ΔVth approach to accelerated simulation, as well as an
accelerated way to construct such a model without the use
of Monte Carlo simulations. However, this same approach
demonstrates a critical fact: threshold variation models are
inadequate. They can only be considered accurate for a single
operating point dependent on the calibration criteria.

Our second approach to parameter reduction demonstrates
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(b)

Fig. 6. Ring oscillator period under the presence of variations. (a) demon-
strates the ring oscillator period under standard conditions (Vdd=1 V), while
(b) demonstrates the reduced accuracy achieved under low-power (Vdd=0.6
V) conditions.

how to apply superposition without a loss in quality. Through
recognition of algebraically-consistent relationships between
variables and allowance for varying coefficients, we can reduce
the number of parameters required for our simplified model.
This intelligent superposition approach allows for increased
accuracy, providing us with a level of accuracy far exceeding
a ΔVth approximation.
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