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Abstract— Statistical variability due to the discreteness and 
granularity of charge and matter has a large impact on SRAM 
performance due to its stochastic nature. In this paper we have 
performed 5 million SRAM dynamic write simulations with 
accurate compact models which capture all aspects of statistical 
variability and use them to benchmark the accuracy of Gaussian 
threshold voltage modeling strategies and a common SRAM 
margining technique, MPV. The results show that while MPV 
and Gaussian VT are proven approaches, deep into the tails of 
the distribution NPM simulation may present significant 
opportunities for improved design. 

I. INTRODUCTION 
Statistical variability, associated with the granularity of 

matter and discreteness of charge, has a significant impact on 
the performance, power and yield of SRAM. At the 20/22nm 
technology generation, the major sources of statistical 
variability include Random Discrete Dopants (RDD) [1], Line 
Edge Roughness (LER) [2] and Metal Gate Granularity 
(MGG) [3].  

Because of this, it is important to include accurate 
statistical variability information in the SRAM design and 
evaluation process. Unlike digital logic circuits where timing 
delays within a chain typically average out, missed SRAM cell 
timing may render a whole SRAM block non-functional. In 
order to increase SRAM density, designers attempt to optimise 
cells until minimally T-sized transistors can be found which 
provide a functioning cell that gives the required yield; as the 
magnitude of variability is inversely proportional to device 
area this leaves the transistors in SRAM cells acutely sensitive 
to statistical variability. The huge numbers of SRAM cells in 
modern memory arrays provide a strong motivation to 
simulate SRAM performance accurately up to and beyond 5 σ. 
Due to its stochastic nature, statistical variability is resistant to 
standard yield improvement methodologies, like Supply 
Voltage Scaling (SVS) [4] or Adaptive Body Biasing (ABB) 
[5] and cannot be modelled using ‘process corner’ modelling 
approaches. 

The impact of statistical variability on SRAM operation 
has been a hot topic since the 100nm technology generation, 
with multiple approaches proposed to evaluate the impact of 
statistical variability on the SRAM standard cell. Most of 

these, however, have been limited to considering only the 
threshold voltage of devices, modelled as a Gaussian 
distribution (Gaussian VT); an approach known as idealisation 
of statistical chaos in a single variable [6]. This approach has 
been favoured due to its ease of implementation and relative 
ease of technology characterisation. In addition, the Gaussian 
VT approach also simplifies statistical analysis and enables 
margining approaches like Most Probable Vector (MPV) [6], 
which can drastically reduce simulation time. It is well known 
[7,8] that in order to do this, Gaussian VT captures only the 1st 
order effects of variability, and over estimates the correlation 
between threshold voltage and other device figures of merit. It 
is of considerable industrial interest to examine quantitatively 
the effects of this approximation. 

 

Figure 1.  10,000 simulated device at high drain bias 

In this paper we perform 10,000 3D TCAD device 
simulations using the GSS variability simulator GARAND [9] 
using template Bulk-MOSFET devices designed by GSS. 
These devices have physical gate length of 25nm and are 
representative of 20/22nm bulk technology generation. The 
TCAD simulations include the dominant statistical variability 
sources at this technology node (RDD, LER and MGG) and 
provide accurate statistical variability information on device 
performance. The transfer characteristics obtained from 
simulation of 10,000 n-channel devices can be seen in Figure 
1. Statistical compact models are then extracted and the 
advanced compact model generation strategy — Non-linear 
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Power Method (NPM) [10] — is used for the purpose of 
statistical SRAM simulation, as it produces an effectively 
unlimited number of unique devices, which very accurately 
reproduce the statistical behaviour of underlying technology. 

In order to evaluate the effect of statistical variability on 
SRAM in an industrially relevant application, this project has 
been carried out in collaboration with ARM Ltd. The purpose 
of the project was to evaluate a representative industry 
‘margin’ simulation, (in this case the MPV method) against 
comprehensive Monte-Carlo simulation with compact models 
generated using NPM. SRAM dynamic write margin was 
chosen due to its paramount importance in determining word 
line pulse width. 

II. SCM EXTRACTION AND GENERATION 

 

 

 
Figure 2.   Comparison between the distribution of key figures of merit of 
the nMOSFET extracted from the TCAD simulation and from the compact 

model. 

The statistical extraction strategy used has been previously 
described and is proven to accurately capture the impact of 
statistical variability on device performance [7], it is a two-
stage process, and employs the GSS statistical compact model 
extractor Mystic [9]. First a nominal compact model, based on  
‘uniform’ TCAD simulation or average device measurements 
containing no effects of variability, is extracted. This model is 
calibrated to capture gate length, body bias and temperature 
dependence for the underlying technology. A subset of the 
standard BSIM4 parameters is then selected to capture the 
variations in device performance due to atomistic effects. The 
analysis combines an in-depth knowledge of device physics, 
the effects of statistical variability on device performance and 
an intimate knowledge of the BSIM4 compact model 

equations and parameters. Each physical effect of stochastic 
variability at high and low drain voltage (namely threshold 
voltage, on-current, off current, subthreshold slope, drain 
induced barrier lowering (DIBL), mobility, vertical field 
dependence) is modelled by a specifically selected parameter, 
which is directly extracted. 

 
Figure 3.  Comparison of correlations between extracted figures of merit for 

the nMOSFET from TCAD simulations and from the compact models 

In the case of the 10,000 25nm n-channel ensemble, it was 
found that 9 carefully chosen and controlled parameters can 
accurately and completely capture the performance of the 
device ensemble. Figure 2 provides a comparison between the 
device figures of merit of device simulated using the extracted 
compact models and those extracted from atomistic 
simulations while Figure 3 illustrates shows that the extraction 
strategy developed accurately captures their correlations.  

In order to generate continuous distribution of devices, 
which accurately reproduce the statistical behavior of the 
underlying transistor distributions, we use the Non-linear 
Power Method (NPM) calculated using the compact model 
parameter distributions obtained from statistical extraction. 

III. SRAM DYNAMIC WRITE MARGIN SIMULATION 
A test memory system design was supplied by ARM for 

the purposes of this project, including addressing, word-line 
pulse generation, pre-charge, sense-amp and clock generation 
circuitry. The SRAM bit cell is representative of a ‘low 
power’ cell. Dynamic write simulations model a realistic 
operating condition for the whole SRAM system, and as such 
can be directly related to actual SRAM system operation and 
yield. The simulation of dynamic write margin (WM) was 
chosen for this comparison due to its paramount importance in 
defining the word line pulse width, which limits the cycletime 
for write operations. If this is longer than the read cycletime it 
will be the limiting factor for the memory cycletime. 
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Figure 4.  Dynamic Write Measurement 

The dynamic write margin is defined as the time between 
the rising internal node reaching 70% of VDD before the word 
line falls to 50% of VDD. The measurement is depicted in 
Figure 4. For the purpose of these simulations we only 
consider the effect of statistical variability on the SRAM cell, 
assuming that the word line pulse is constant. The reason 
behind this is that the surrounding digital circuitry is more 
significantly affected by process variability as it is standard 
digital logic and a global drift has a larger impact on digital 
circuit timing performance as statistical variability effects can 
average out. This assumption holds true for dynamic write 
margin simulation, as we do not use the sense amplifier, which 
may be highly sensitive to statistical variability, during the 
write operation.  

WM is largely dependent on the falling node which 
transitions from ‘1’ or high to ‘0’ or low. Initially the bit lines 
are pre-charged to ‘1’, then the bitline on the rising node side 
is actively driven. The bit-line on the side of the internal node 
falling from ‘1’ to ‘0’ is left floating and slowly discharges on 
to the bit-line. Due to this, the rate at which the internal node 
is pulled down from ‘1’ to ‘0’ is dominated by the 
performance of the pass transistor, enabled by the word line, 
and the pull-up transistor, which is ‘on’ as the node is 
currently storing a ‘1’. The node voltage slowly discharges 
and starts to feedback to the pull up and pull down transistors 
of the opposite node. This creates a feedback loop, which 
slowly decreases the voltage on the falling node until the cell 
reaches its metastable point and the cell almost instantly 
changes state. At this point the falling node and equivalent 
bitline are quickly discharged through the pulldown transistor 
and the write operation is complete. The dynamic write 
margin can be broken down into two components: the falling 
node discharge time, which dominates due to its relatively 
slow nature and is defined by the falling node pull-up to pass 
transistors, and the cell inverter pair metastable point, which is 
defined by the cross-coupled inverter pair.  In order simulate 
the circuit at its most likely failing point we perform all 
simulation and analysis a the Slow N-Fast P process corner 
and at T=-40°C .  

A. MPV Analysis 
The MPV method relies on the assumption that Gaussian 

VT accurately captures the effect of statistical variability, and 
involves calculating the standard deviation of the threshold 

voltage of each transistor in the circuit. Offsets to the 
threshold voltage of each transistor are calculated based on 
Equation 1, 

  (1) 

where M  is defined as the performance metric,  is 
the unit perturbation which degrades M  by , and  is the 
gradient of degradation of M. MPV signifies the shortest path 
of degradation of the metric. These offsets are applied in the 
direction which most degrades cell performance and allows 
the calculation of the most probable fail point in the circuit. 
We already know that two assumptions inherent to this 
method are potentially problematic, typically requiring 
industry to introduce more robust margins into the design 
methodology to guarantee customer yield. First, threshold 
voltage is Gaussian distributed to high sigma [1,11], and 
second, Gaussian VT accurately represents statistical 
variability on a device and circuit level [7,8]. These 
assumptions will be evaluated through large-scale Monte 
Carlo simulation using NPM model simulations as a reference. 

IV. SIMULATION RESULTS 

 
Figure 5.  CDF plot of dynamic write margin obtained through Gaussian VT, 

NPM and MPV simulation. 

The results of dynamic write simulations for Gaussian VT, 
NPM and MPV approaches are shown in Figure 5 in the form 
of logarithmic Empirical Cumulative Distribution Function 
(ECDF) plots which provide an estimate of the CDF of the 
input distribution. In each result set there are 5 million NPM 
and Gaussian VT simulations, which characterize the results to 
~4.5 σ and allow analysis deep into the tails of the dynamic 
write distribution. These results show that, while MPV 
reproduces the results of Gaussian VT simulation, both of 
these results are pessimistic in comparison with the NPM 
model simulations. Full compact model simulations generated 
with NPM show a WM failure point for this cell design and 
word line pulse width which is close to 4.4 σ, compared to 
4.1-4.2 σ predicted by Gaussian VT and MPV. Converting this 
to a parts per million failure rate, Gaussian VT / MPV 
simulations predict approximately 20 fails per million, while 
full model simulations show that the actual fail rate is closer to 
4 fails per million. This indicates that while MPV and 
Gaussian VT are proven approaches, deep into the tails of the 
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distribution NPM simulation may present significant 
opportunities for improved design. 

 
Figure 6.   The bit line voltage is represented by Bitline, the falling node 

voltage is represented by Falling Node and the difference is represented by 
Falling Node-Bitline 

 
Figure 7.   Generated device threshold voltage plotted against the 

corresponding device low drain on current, for NPM and GVT Devices, inset 
are device measurements at 65nm from Hiramoto et al. [8]  

In order to understand the differences between Gaussian 
VT and NPM based full model simulations we analyse the 
most dominant transistor in the circuit as indicated by MPV 
analysis, which is the pass gate transistor on the falling SRAM 
cell node. Analysis shows that the worst Dynamic Write 
margin is obtained when this device is ‘weak’ i.e. when it has 
a high threshold voltage and low on-current, write margin is 
reduced. Considering the bias conditions of the pass transistor 
during the write operation we see that the gate bias is at VDD 
due to the word line pulse and that the source and drain are 
close to VDD due to the pre-charged bit line and internal node 
state of the cell. The bit line voltage then falls as it’s 
capacitance discharges, creating a potential difference across 
the source and drain of the pass transistor and current begins 
to flow. The node voltage of the source and drain of the pass 
transistor in a typical device simulation with no variability is 
shown in Figure 6. From this we conclude that due to the fact 
that the peak drain bias of the critical pass gate is 0.4V, the 
limiting factor of its operation is therefore the low drain bias 
on-current of the pass device. 

In order to understand the deviation of the predictions 
from Gaussian VT and NPM simulations we compare 10,000 

n-channel pass gate devices generated using the NPM 
generation approach and Gaussian VT. Figure 7 shows the pass 
gate threshold voltage compared to low drain on current for 
both NPM and Gaussian VT generated devices. It is clear that 
the Gaussian VT approach greatly overestimates the 
correlation between threshold voltage and low drain on-
current. The use of Gaussian VT yields a correlation 
coefficient of 1, while NPM data shows a correlation 
coefficient of  ~0.7. The data also shows a systematic offset 
between the Gaussian VT generated devices and the NPM 
devices, which is greatest for devices with higher threshold 
voltages, where Gaussian VT simulation underestimates the on 
current of the transistors. This result explains the pessimistic 
predictions of the Gaussian VT method in Dynamic Write 
Margin simulations, as they predict pass gates with high 
threshold voltages have significantly lower on-current than the 
actual devices. 

V. CONCLUSIONS 
This paper presents the results of circuit simulations based 

on advanced statistical compact models extracted using a 
physical extraction strategy which captures the effects of 
statistical variability on circuit performance. NPM was then 
used to create compact model generators which reproduced 
the statistical behavior of the underlying technology. NPM 
based simulations were compared to Gaussian VT based 
simulations and the MPV margining technique on sample 
sizes of 5 million simulations. The results show that while 
MPV and Gaussian VT are proven approaches, deep into the 
tails of the distribution NPM simulation may present 
significant opportunities for improved design. 
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