
Toward computationally efficient Multi-Subband
Monte Carlo Simulations of Nanoscale MOSFETs

Patrik Osgnach, Alberto Revelant, Daniel Lizzit, Pierpaolo Palestri, David Esseni and Luca Selmi
DIEGM, University of Udine, Udine, Italy

Via Delle Scienze 206, 33100 Udine
Email: patrik.osgnach@uniud.it

Abstract—We show how intense exploitation of multi-core
architectures allowed us to cut by up to an order of magnitude
the execution times of a Multi-Subband Monte Carlo (MSMC)
simulator. The result brings simulations with the MSMC method
out of the strictly academic domain and close to the execution time
threshold for effective use in R&D departments of semiconductor
research centres and industries.

I. INTRODUCTION

Monte Carlo (MC) techniques to solve the semi-classical
Boltzmann Transport Equation (BTE) have been for long
time regarded as excessively demanding from a computational
point of view and too time consuming for the daily use
in the R&D departments of semiconductor industry. Thanks
to continuous increase of computing resources at decreasing
costs, and to improved algorithms for efficient collection of
carrier statistics [1], the use of MC transport simulators is
today well accepted for device analysis and design. In fact,
MC is a perfectly integrated section of standard TCAD tools
[2]. Aggressive scaling of CMOS devices and the introduction
of technology boosters, such as high-κ gate stacks, strain and
crystal orientation engineering promoted the adoption of multi-
subband Monte Carlo models (MSMC) where a system of
coupled BTEs for the inversion layer subbands is solved [3],
[4], [5], [6], [7]. These models are computationally heavier
than conventional MC models for the 3D carrier gas. MSMC
has demonstrated its ability to enable the understanding of
complex nanoscale CMOS device physics [8], but it is still
mainly an academic research tool with execution times ranging
from hours to tenths of hours per bias point on single core
architectures.

In order to bring MSMC to the same level of acceptance
that conventional 3D MC has today, a significant reduction
of the execution times is mandatory. Code optimization is one
way to achieve this goal but, as will be shown in the following,
its benefits are often of modest entity and vary greatly from
one simulation to another. The limitations of optimization are
evident when one considers how modern CPUs are evolving
nowadays. Significant CPU performance improvements do not
come from a more efficient microarchitecture but from the
integration of multiple cores on the same die. Having many
cores has a price, however. Top notch CPUs (from Intel [9])
have a maximum TDP (Thermal Design Power) of 130-150W,
and an increase in the number of cores corresponds to a
decrease of the clock frequency of each core. Thus, unless
there are very few processes running on a given CPU, the
performances of single-threaded processes are reduced. From
these considerations it is clear that, in order to achieve our goal,

a massive exploitation of available multi-core architectures
must be sought by means of code parallelization.

II. SIMULATOR OVERVIEW

MSMC simulators [3], [4], [5] solve the multi-subband
BTE by looping through 4 main steps (Fig. 1) until conver-
gence is reached. Firstly the device is partitioned in sections
along the transport (x) direction and the 1D Schrödinger
equation is solved in each section to obtain the subband
energies and wavefunctions (step “1”, SE). The scattering rates
used in the MC transport are computed in each section (step
“2”, SC) according to the subbands energies and wavefunctions
[10]. The subband profile along x is then constructed by
connecting the subbands of each section and it is used by
the Monte Carlo transport algorithm (step “3”, MC) to move
the particles inside the device. Transport is divided in time-
steps with duration of about 1fs. Statistics collection occurs
periodically (e.g. every 10 time steps). After the MC transport
step, a new potential profile is computed by solving the 2D
Poisson equation (step “4”, PE). Since the Monte Carlo method
relies on a statistical sampling algorithm, its performances and
accuracy depend on how the carrier statistics are collected and
on the quality of the random numbers generator, as we show
in section IV.

III. OPTIMIZATION

The first step of any optimization task is to find the regions
where most time is spent during the program’s execution, the
so called hot spots, and estimate their relative contribution to
the duration of the job. This is typically done using a profiler.
To this purpose we used Intel Vtune Amplifier XE 2013 [11]
and the results are shown in Fig. 2. The simulation time is
dominated by the SC step, followed by the MC step. The other
steps add a negligible computational burden. This technique
identified many sections of the original MSMC code where
improvements were possible. Among these improvements, two
are are worthy of notice.

The first regards one of the data structures used during the
MC step (step 3 in Fig.1). In order to take properly into account
the Pauli’s exclusion principle we need to keep track of the
particles state, which results in the occupation function in the
�k space. For each particle, the occupation is described by the
device section (“x”) where the particle is located, its valley
(conduction band minimum), its subband (eigenvalues of the
Schrödinger’s equation) and its wave-vector in the transport
plane (�k). A five-level tree is thus required to record the

176 978-1-4673-5736-4/13/$31.00 ©2013 IEEE

occupation of the electron states (Fig. 3a). Trees are very sparse
data structures and the sparseness enforces improper memory
access patterns. These patterns have a profound influence
on the performance of an application. CPUs use the cache
memory to reduce the costs of accessing the main memory,
so the data structures must be designed in order to exploit
the time and space locality principles [12]. In order to obtain
this, we converted the tree into an array with a fixed size
record-like structure (Fig. 3b), thus achieving a more cache-
friendly processing. By construction, each section has the
same number of valleys but each valley can have a different
number of subbands. The discretization of the wave-vector
requires the same amount of elements for each subband.
If we assume that each valley has a number of subbands
equal to the maximum among all the valleys, each element
can be located by performing very simple math. The same
idea applies to other branched structures, such as the ones
containing the scattering rates. There is, however, a price to
pay. The linearization induces some memory waste (depending
on specific simulation parameters), waste partly balanced by
the removal of the internal nodes of the trees, which accounted
for about 1% of the tree memory occupation.

The second optimization regards both the SC and MC steps
(steps 2 and 3 in Fig. 1). We are often interested in finding
the total scattering rate from state k to a final state k′ and
the corresponding wave vector variation (�q) that conserves
the energy. For every such �q we need to compute a matrix
element M(�q). In order to compute the scattering rates in an
acceptable amount of time, the range of all possible �q values is
chosen in advance and is discretized. A matrix element M(�qi)
is computed for every such discretized �qi. During the MC step
it is very likely that we need the matrix element corresponding
to a value of �q which was not in the discretized set of �qi.
Therefore we must interpolate between two known M(�qa) and
M(�qb) such that �qa ≤ �q ≤ �qb. The original code performed
a binary search on the list of �qi, which is the default choice
if the list contents are unknown but ordered. We found that a
distribution of the �qi that follows a geometric progression is
accurate enough and allows us to obtain �qa and �qb (and the
corresponding M(�qa) and M(�qb) analytically and without a
time consuming binary search.

IV. PARALLELIZATION

To start with we note that the SE and the SC steps can be
easily executed concurrently section-by-section. Parallelization
of the MC step instead requires more work and due care.

The MC step implements an ensemble Monte Carlo pro-
cedure: the motion of a set of particles is simulated for a
number (N) of time steps (Δt) [10]. The two main choices
to make are: how to divide the ensemble of particles over
the various threads? How to synchronize the motion in the
different threads? About the first question, performance scaling
with the number of threads can be impaired if the number
of particles processed by one thread is too different from the
number of particles processed by others. Particles assignment
to the threads based on the section where the particle belongs
(similar to what is done in [13], [14]) minimizes the amount
of data structures accessed by each thread, but requires a
significant overhead to trace the particles exiting the domain
of one thread to enter the domain of another thread. We thus

decided to evenly distribute the particles of each section to
all threads (similar to what is done in [15]). This criterion
applies also to the particles injected at the contacts (see [16]
for the description of how ohmic contacts are implemented
in the MSMC). This approach keeps the number of particles
processed by each thread roughly the same.

Since we are interested in steady-state solutions, we allow
the threads to “drift apart”, meaning that, at a given time, the
motion of particles in a chunk may have been computed over
a longer time with respect to the particles of other chunks.
However, when enforcing the Pauli’s exclusion principle, we
need to know the occupation function f to reject scattering
events [17]. To reduce the synchronization points, each thread
builds its own estimate of f but, when computing the state-
after-scattering, it computes the (particle weighted) average of
the f functions of all threads (including its own), for improved
accuracy and reduced statistical noise.

Before the statistics collection phase, all threads are syn-
chronized (by using an explicit barrier [18]). This in done
in order to avoid mixing together information from particles
processed for a too different amount of times when computing
f . Fig. 4 shows that increasing the number of time steps (Δt)
between two synchronization points affects the efficiency of
the parallelization process, that is however negligible above
a given number of steps. On the other hand, since we are
simulating a steady-state process, the error associated to poor
synchronization is essentially negligible. Notice that in the
parallelization of the MC motion, a reentrant [19, sect. 12.3.8]
random number generator must be used, otherwise much time
is spent in serializing the accesses to the global state of a
traditional random number generator. Implementing parallel
steps required a careful inspection and rewriting of the code
to remove any race condition. To parallelize the steps we have
used OpenMP API [18], thus implementing a shared memory
parallelism. The work done so far allows for a fairly simple
conversion to distributed memory parallelism (using MPI),
should it come useful in the future.

V. METHODOLOGY AND BENCHMARKS

To benchmark the improved MSMC simulator we mea-
sured the execution times of the four steps in Fig. 1 using
a profiler [11]. Simulations of three template Si and SiGe
MOSFETs from [20], with the parameters given in Table I
were analyzed. For the sake of a fair comparison, we set
the appropriate number of iterations of the loop in Fig. 1
to reach a given relative error computed using equation 18
from [1]: at the end of each iteration (except the first Ntran

ones, to discard the initial transient phase) we calculate the
channel current ID by averaging the current over the sections
in the channel region. Then we compute ĪD as the average
of ID over all the previous iterations (except the first Ntran)
and σĪD as its unbiased standard deviation. The simulation is
stopped when rerr = σĪD/ĪD falls below a chosen threshold.
All devices have been divided in 102 sections. Ntran = 10
was deemed sufficient to avoid propagating errors from the
initial transient. The phonon and surface roughness scattering
mechanisms were active in the simulations. For device #3,
alloy scattering was also considered. All benchmarks were
performed on a workstation equipped with two Xeon X5690
and 192GiB of DDR3 main memory (1GiB=230B).

177

VI. RESULTS

As a first sanity check, we verified that the same currents
were obtained with the original and the improved codes.
Fig. 5 shows the drain currents vs the gate voltage for the
three devices. The ID computed by the improved code has
a maximum discrepancy of 2.2% with respect to the original
code. Fig. 6 shows that increasing the number of iterations
lowers the relative error and that the process is slower in
the sub-threshold region because no statistical enhancement
techniques are used.

Many factors determine the execution time of the steps
in Fig. 1. The most relevant is the number of sections, since
the duration of the SE and SC steps increases proportionally.
The SC step duration also depends on the number of activated
scattering mechanisms. Roughly 50% of the SC time is spent
computing the dielectric function [21]. The duration of the MC
step is proportional to the number of particles and time steps
(typically between 1000 and 1500). The time spent on solving
PE depends on the size of the mesh. Table II compares the
absolute execution times of the original and the improved code.
We have chosen a relative error rerr of 4% for VGS = 0.0V
and 1% for the other cases, which is more stringent than the
ITRS roadmap specifications for accuracy in modeling [22].
Device 3 requires longer times because of the additional alloy
scattering mechanism, but it is the one which benefits the most
from our work, being now 19 times faster to simulate. For a
given device and a given number of threads [19, sect. 2.2], the
relative amount of time spent in each step is roughly constant
because the executed code is the same at each iteration. For this
reason, in Fig. 2 we show only the time distribution for VGS =
0.5V. Parallel execution should keep constant the percentages
of Fig.2, when the parallel steps scale equally well, while the
optimization should changes the relative contribution.

Finally, Fig. 7 shows how the parallel code scales with the
number of threads. We compare the execution times taking
the original code as a reference. The scaling is not ideal and
tends to saturate when the number of threads is increased. This
is because of both the implicit synchronization points (at the
end of the parallel regions [18] in the SE, SC and MC steps)
and the explicit ones (added to the Monte Carlo code when
statistics are collected). A strategy for particle removal and
injection at the contacts that keeps their number uniform over
the threads mitigates the detrimental effects of these explicit
synchronization points, as explained in section IV. For device
#3 in Table I, the code optimizations alone (seen when using
only one thread) account for a 66% execution time reduction,
but this figure reduces to about 10% for other devices, thus
confirming that code optimization is not enough to achieve the
desired execution time savings. After all the work done, what
remains strictly serial is the PE solver and all the initialization,
management and support code. This code accounts for about
1.5% of the total execution time. By applying the well known
Amdahl’s law [23] we obtain a maximum theoretical average
scaling of 7.23 when using 8 threads (see Fig. 7), which is
higher than the actual average scaling of 6.4. The difference
is due to the synchronization points in both the SC and MC
steps. Regarding MC, we have synchronized every 10 time-
steps in all figures, whereas Fig.4 shows that increasing the
time steps between synchronization may help.

VII. CONCLUSION

The improved version of the MSMC simulator delivers
in few hours (or less) results which required about one day
of computation time. Speed-up factors are close to those
predicted by Amdahl’s law. 8-threaded simulations are almost
6.5 times faster (on average) with respect to the single-thread
simulation, which in turn can be up to an additional factor
of 3 times faster due to code optimization. The differences
between the theoretical and measured speed-ups are due to the
unavoidable synchronization points. Regarding the SC and SE
blocks, these points are placed at the end of the parallel regions
in order to prevent the subsequent blocks from using partial
data. Regarding the MC block, the synchronization points are
needed to prevent the threads from drifting too much apart.
These results are very promising in the perspective of enabling
MSMC simulations in R&D departments of research centers
and semiconductor industries.

ACKNOWLEDGEMENTS

This work was partially funded by the EU FP7 project
STEEPER via the IUNET consortium and by the project
“Futuro in Ricerca” (RBFR10XQZ8).

REFERENCES

[1] C. Jungemann et al. In Proceedings of SISPAD, p. 209–212, 1997.
[2] http://www.synopsys.com/Tools/TCAD/CapsuleModule/news dec04.pdf p. 7.

[3] L. Lucci et al. IEEE TED, p. 1156 –1164, 2007.
[4] M. De Michielis et al. In IEEE TED, p. 2081–2091, 2009.
[5] M. V. Fischetti et al. Phys. Rev. B, p. 2244–2274, 1993.
[6] F. Gamiz et al. IEEE TED, p. 1122–1126, 1998.
[7] J. Saint-Martin et al. Semiconductor Science and Technology, p. L29,

2006.
[8] F. Conzatti et al. IEEE TED, p. 1583–1593, 2011.
[9] http://ark.intel.com/.

[10] D. Esseni, P. Palestri, and L. Selmi. Nanoscale MOS Transistors.
Cambridge University Press, 2011.

[11] http://software.intel.com/en-us/intel-vtune-amplifier-xe.
[12] P. J. Denning. ACM Communications, p. 19–24, July 2005.
[13] A. Kepkep et al. In Proceedings of IWCE, p. 21–22, 2000.
[14] Wei Zhang et al. In Proceedings of IWCE, p. 1–4, 2009.
[15] A. Hiroki et al. In Proceedings of VPAD, p. 18–19, 1993.
[16] P. Palestri et al. Semiconductor Science and Technology, 25(5), 2010.
[17] P. Lugli et al. IEEE TED, p. 2431–2437, 1985.
[18] B. Chapman et al. Using OpenMP. The MIT Press, 2007.
[19] A. Tanenbaum. Modern Operating Systems 3rd edition. Pearson, 2007.
[20] D. Lizzit et al. IEEE TED, p. 1884–1891, 2013.
[21] P. Toniutti et al. IEEE TED, p. 3074–3083, 2010.
[22] http://www.itrs.net/Links/2012ITRS/2012Tables/Modeling 2012Tables.xlsx.

[23] G. Amdahl. In Proceedings of AFIPS, p. 483–485, 1967.

V(x,y)

Scattering
Rates

nn(y)
fv,i,n(k)

Ev,i,n

v,i,n(y)
Scattering theory of 2D electron gas (SC)

Step 2

Schrödinger Equation (SE)
Step 1

Monte Carlo (MC) (BTE)
Step 3

Non Linear Poisson Equation (PE)
Step 4

Fig. 1. Flowchart of a typical MSMC simulator [3]. Transport is along x
direction, quantization is along y direction.

178

Device #1 Device #2 Device #3

O
ri

gi
na

l
co

de

MC 21.5%

SC 76.7%

Other 1.8%

MC 37.4%

SC 60.6%

Other 2.0% MC 10.9%

SC 88.4%

Other 0.7%

Im
pr

ov
ed

co
de MC

19.7%

SC 77.8%

Other 2.5%

MC
36%

SC
61%

Other 3%
MC

16.7%

SC
81.8%

Other 1.6%

Fig. 2. Execution time distribution measured with the original code for the
devices in Table I. VDS = 0.5V. The percentages do not depend on the applied
voltages or on the number of iterations.

Se
ct

io
n

(n
)

Va
lle

y
(v

)

Su
bb

an
d

(i)

K x K z

(a)
Occ (KX, KZ)

Section 0
Valley 0
Subband 0

(b)

Occ (KX, KZ)
Section 0
Valley 0
Subband 1

Occ (KX, KZ)
Section n
Valley v
Subband i

......

Fig. 3. Linearization of the branched structure of the electron states
occupation. (a) represents the original tree-shaped data structure. The square
matrices in (b) (one for each subband) represent the occupation in the
(KX ,KZ) plane.

0 50 100 150 200
Statistics collection interval

0.00

0.50

1.00

1.50

2.00

E
rr

or
 (

%
)

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

S
pe

ed
-U

p
F

ac
to

r

Fig. 4. Speed up using 8 threads (with respect to single-threaded simulation)
and simulation error vs synchronization interval for device #3, VGS = 0.5V.
The case with synchronization interval equal to 10 time steps is taken as
reference to compute the error.

TABLE I. MAIN PARAMETERS DESCRIBING THE UTB-SOI DEVICES
CONSIDERED IN THIS STUDY. STRAIN IN DEVICES #2 AND #3 IS

INTRODUCED BY A SI0.25GE0.75 SUBSTRATE.

Device Tsemi EOT Lch LS/D Channel material

#1 7nm 0.7nm 14nm 20nm Relaxed Si
#2 7nm 0.7nm 14nm 20nm Strained Si
#3 7nm 0.7nm 14nm 20nm Strained Si0.5Ge0.5

0 0.1 0.2 0.3 0.4 0.5
VGS[V]

10
-7

10
-6

10
-5

10
-4

10
-3

I D
[A

/
m

]

Dev #1 Original
Dev #1 Improved
Dev #2 Original
Dev #2 Improved
Dev #3 Original
Dev #3 Improved

Fig. 5. Drain current for the three devices of Table I vs gate voltage. VDS

= 0.5V.

10 20 30 40 50
Number of iterations

10 20 30 40 50
Number of iterations

0.00

0.01

0.10

r er
r

(a) (b)
10 20 30 40 50

Number of iterations

VGS = 0.0V
VGS = 0.2V
VGS = 0.5V

(c)

Fig. 6. Relative error vs iterations number for device #1 (a), #2 (b) and
#3 (c) in Table I. VDS = 0.5V. See [20] for more details about the device
structure and the scattering rates.

TABLE II. EXECUTION TIME FOR THE DEVICES OF TABLE I.

Dev. VGS
Iterations
required

Original
exec. time (s)

Improved
exec. time(s)
(8 threads)

Speed-Up
factor

1 0.0V 45 54679 8033 6.8
0.2V 22 27411 3907 7.0
0.5V 15 18651 2626 7.1

2 0.0V 27 25346 3603 7.0
0.2V 20 19002 2656 7.1
0.5V 13 12244 1743 7.0

3 0.0V 50 240746 12740 18.9
0.2V 18 88734 4539 19.5
0.5V 12 59956 3179 18.9

1 2 3 4 5 6 7 8
Number of threads

0

0.2

0.4

0.6

0.8

1

E
xe

c
tim

es
 (

O
rig

in
al

 C
od

e
=

 1
) Device #1

Device #1 Ideal
Device #2
Device #2 Ideal
Device #3
Device #3 Ideal

Fig. 7. Execution times reduction versus the number of threads. Ideal curves
refer to the scaling expected by applying the Amdahl’s law. VGS = 0.5V, VDS

= 0.5V.

179

