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Abstract—We develop a modified top-of-the-barrier model 
(TBM) for simulating graphene FETs.  Our model captures 
band-to-band (Klein-Zener) tunneling, which is important in 
zero-bandgap materials, and it accounts for variations in the 
densities of states between the channel and the source and drain 
regions.  The model is benchmarked against a sophisticated self-
consistent NEGF solver and shows very good quantitative 
agreement.  The utility of our modified TBM is demonstrated by 
investigating and comparing the RF linearity of graphene FETs 
to that of CNFETs and conventional MOSFETs. 

Keywords—band-to-band tunneling, density of states, field-
effect transistor, graphene, linearity, top-of-the-barrier model. 

I.  INTRODUCTION 
The excellent electronic properties of graphene are believed 

to make it a promising alternative to silicon for use in future 
electronics, particularly for analog circuit applications. As the 
down-scaling of graphene channels continues, compact 
modeling approaches that can tractably predict the terminal 
behavior, including effects arising from the zero bandgap --- 
such as variations in the densities of states between the channel 
and source and drain regions [1] and band-to-band tunneling 
[2] --- will be essential to explore graphene’s circuit 
capabilities.  

To date, the amount of work done on modeling graphene 
field-effect transistors (GFETs) has been significant.  The 
reported approaches range from semi-classical, top-of-the-
barrier models (TBMs) [3, 4] to numerically involved 
quantum-mechanical solvers based on non-equilibrium Green’s 
functions (NEGF) [5-8].  The quantum-mechanical solvers, 
although complex and numerically demanding, are necessary to 
provide rigorous theoretical benchmarks, while semi-classical 
TBMs can provide reasonably accurate results when speed and 
simplicity matter, such as for compact models.    

In this work, we present a way to simulate electronic 
transport in GFETs through a modified TBM [9] that captures 
both variations in the densities of states and band-to-band 
tunneling, while remaining numerically efficient.  The new 
model is shown to produce accurate results when compared to 
a more rigorous, self-consistent, quantum-transport solver 
based on NEGF [5], and its potential is demonstrated by 
investigating the radio-frequency (RF) linearity of GFETs.   RF 
linearity is an important transistor property that is relevant for a 
variety of circuit applications, but which is notoriously difficult 
to predict, requiring both accuracy and tractability in the 
modeling approach. 

II. THEORY 
As graphene devices mature beyond the research stage, 

doped MOSFET-style devices will be necessary to obtain 
better performance than the Schottky-barrier devices prevalent 
today [10, 11].  Based on this observation, and as a starting 
point, we assume the device geometry shown in Fig. 1(a), 
consisting of an intrinsic channel region surrounded by heavily 
doped source and drain regions.  For reference throughout this 
discussion, a plot of the Dirac-point energy  versus position 

 under typical operating conditions in such a device is shown 
in Fig. 1(b). 

 
Fig. 1.  (a) Device geometry of the simulated GFET [5]. (b) Dirac-point 
energy  versus position , where the superimposed cones represent 
graphene’s band structure.   

Top-of-the-barrier approaches [9] have been widely used to 
model ballistic transport in field-effect transistors.  Despite its 
simplicity, the conventional TBM has been shown to offer 
good accuracy when compared to more rigorous simulation 
methodologies for CNFETs and MOSFETs [9, 12].  The most 
striking difference between the channel materials used in such 
FETs and graphene is that the bandgap is zero in graphene.  
The zero bandgap causes the transport to be strongly 
ambipolar, i.e., both electrons and holes contribute to the 
charge flow.  This ambipolar character of graphene can be 
taken into account by modifying the transport equations of the 
conventional TBM [9] in the following manner:   
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where  and  are the electron and hole density of the 
channel arising from contributions from the source/drain 

, respectively;  is the channel Dirac-point energy, 
determined by shifting its equilibrium position  by the 
self-consistent potential , i.e.,   

 is the channel density of states (DOS);  is the 
Fermi-Dirac distribution function;  is the chemical 
potential of the source/drain reservoir;  is the total charge in 
the channel, which is used in Poisson’s equation to determine 

;  is the conventional current from the source/drain; 
and  is the net drain-to-source current. 

Although the TBM specified by (1)-(5) can capture the 
ambipolar nature of transport in graphene, it still misses 
important physics.  First, the lack of a bandgap in graphene 
results in significant band-to-band tunneling, a quantum-
mechanical effect that the conventional TBM does not include.  
Second, the conventional TBM cannot model the difference in 
the DOS between the doped reservoirs and the channel.  These 
limitations can be overcome by amending the TBM through the 
following steps.  First, band-to-band tunneling is introduced to 
the TBM with the WKB approximation [2].  Second, we 
construct an “effective DOS” that accounts for the fact that the 
densities of states in the source and drain reservoirs vanish at 
the local Dirac points [  and  in Fig. 1(b)], 
preventing any transmission at these energies [5]. 

A. Effective Density of States 
The effect on transport due to the lack of states at the Dirac 

points in the source and drain reservoirs can be included in the 
top-of-the-barrier formalism by replacing the channel density 
of states  with two effective densities of states.  Our 
refined model hence replaces  with for transport 
from the source to the channel and  for transport from 
the drain to the channel.  At each energy, the effective DOS 
functions contain the minimum density of states existing 
between the corresponding reservoir (source or drain) and the 
channel.  Equations (1) and (2) can therefore be re-written as  

 (6) 

 (7) 

It is worth mentioning here that in the conventional TBM [9], 
the doped source and drain are assumed to be infinite 
reservoirs, in which case the “effective DOS”  
always reduces to the channel DOS , as it is the channel 

that determines (limits) the available states for transport at all 
energies. 

Fig. 2(a) shows the effective DOS , which is zero at 
the Dirac-point energies associated with the source and the 
channel, and Fig. 2(b) shows the corresponding Landauer 
transmission function for the electron/hole transport, which is 
proportional to  for the energies shown; as illustrated, 
the transmission vanishes at those energies where  
vanishes, in agreement with results obtained from the quantum-
mechanical NEGF solver reported in [5].  For reference, the 
DOS and the transmission function from the conventional 
TBM are also plotted (dash-dot). 

 
Fig. 2. (a) Effective (normalized) source-to-channel DOS  of the 
modified TBM, being zero at the indicated Dirac-point energies, and (b) 
respective effective (normalized) transmission function describing the source-
to-channel transport.  (Inset: transmission obtained from a NEGF solver under 
similar operating conditions [5].)  The DOS and the transmission function for 
the conventional TBM are also plotted (dash-dot) for comparison.  

B. Band-to-Band Tunneling 
Graphene is a zero-bandgap semiconductor. This unique 

property makes it considerably different from its competitors, 
such as silicon and carbon nanotubes. The lack of a bandgap 
means that the valence band in the channel actively participates 
in transport along with the conduction band.  For example, 
under certain gate biases, the carriers in the conduction band in 
the doped source and drain reservoirs can tunnel through the 
potential barrier at the corresponding reservoir-to-channel 
interface and enter the channel valence band [Fig. 1(b)]. This 
additional transport path, i.e., in addition to regular thermionic 
transport over the barrier, must be taken into account in 
graphene to predict the terminal behavior.  

In order to properly model the band-to-band tunneling in a 
graphene FET, we have modified the conventional TBM 
equations by introducing a tunneling probability  as 
a function of energy , so that (6) and (7) become 

 
(8) 

 
(9) 

where  is the band-to-band (Klein-Zener) tunneling 
probability from the source/drain reservoir to channel. The 

156



Klein-Zener tunneling probability, unlike conventional 
quantum tunneling, can assume a value of unity when a carrier 
encounters a potential barrier, depending on its direction of 
travel, and within the WKB approximation, this tunneling 
probability  can be expressed as a function of the 
longitudinal component of the wave vector  [2]: 

 (10) 

where  is the Fermi velocity in graphene (~105 m/s),  is 
magnitude of the electronic charge, and  is the electric field 
of the potential barrier at the source/drain reservoir-to-channel 
interface, given by , with  being the 
voltage across the source/drain barrier and  being an 
effective width.  By a change of variables, the tunneling 
probability can be rewritten as a function of energy: 

 (11) 

where  is the zeroth order Bessel function of the first kind 
and . 

These amendments lead to a modified set of TBM 
equations by which we are able to quantitatively match a 
GFET's behavior as predicted by more rigorous NEGF 
simulations [5], including the transistor's current-voltage 
curves, unity current-gain frequency , transconductance , 
and output conductance . The usual fitting parameters [9] 
accompanied with the TBM, i.e., , , and , along with 
the new fit parameter , are used to calibrate our model. The 
resulting solver is then used to determine the RF linearity of 
graphene using the method described in [12]. 

III. RESULTS AND DISCUSSION 
Our modeled GFET [Fig. 1(a)] has dimensions identical to 

the device investigated in [5], including a gate length of 18 nm.  
As a first step, the three fitting parameters , , and  were 
used to fit the TBM output with the NEGF data following the 
procedure of [9]. The fourth fitting parameter  was then 
introduced (accompanied by a tweaking of the initial values of 

, , and ) to further enhance the match. For the modeled 
GFET, we obtained , , , and 

.  

Of particular note is the magnitude of  obtained during 
the fitting.  The value in the conventional TBM is , a 
value much smaller than the value of 0.17 observed with our 
modified approach.  The new value is consistent with results 
from [5], which predict a more dominant drain capacitance 
than is normally observed.  The modified TBM thus more 
closely matches the underlying physics observed in much more 
detailed calculations, while still running in a fraction of the 
time.  

It should also be noted that during fitting of both the 
conventional TBM and the modified TBM with NEGF data, an 
effective oxide thickness of 1.5 nm was needed for proper 
matching. This value differs from the actual value of 2 nm 
[indicated in Fig. 1(a)] to account for fringe capacitance in the 
real structure, which is automatically included in the NEGF but 
which is excluded in the TBM.  

Fig. 3 shows the current-voltage characteristics of the 
GFET from our modified TBM solver and the self-consistent 
NEGF solver [5].  Considering the simplicity of our modified 
TBM, the agreement is quite remarkable.  Fig. 4 demonstrates 
that the developed model not only matches the  output 
characteristics, but also is in good agreement with more 
sensitive quantities involving derivatives, such as the 
transconductance  and output conductance ; in addition, 
our modified TBM shows a clear improvement towards the 
NEGF solution over the conventional TBM, particularly at 
lower , where the magnitude of the tunneling current 
through the barrier is significant.  Finally, we have plotted the 
second derivatives of the current in Fig. 5, which shows an 
even better improvement over the conventional model.  Such 
improved agreement is important for an accurate prediction of 
the device’s properties for analog circuit applications, such as 
RF linearity, which requires a proper modeling of the slope and 
curvature of the transistor characteristics versus voltage. 

 
Fig. 3. Current-voltage characteristics of the graphene field-effect transistor 
from NEGF (dash) and the modified top-of-the-barrier solver (solid). 

 
Fig. 4. (a) Transconductance and (b) output conductance versus gate voltage 
of the graphene field-effect transistor from NEGF (dash), conventional top-of-
the-barrier model (dash-dot), and modified top-of-the-barrier model (solid). 

We used our modified TBM solver to determine the 
element values of a nonlinear, small-signal equivalent circuit 
(Fig. 6) for the GFET of Fig. 1(a), following the approach 
described in [12]. Here, , , and  are the electrostatic 
capacitances of the GFET, which we assume to be linear as a 
first approximation, as discussed in [12];  and  are the 
nonlinear source and drain quantum capacitances, respectively; 
and  and  are the nonlinear current sources that model the 
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quasi-static transport currents of the device.  It is worth noting 
that due to the higher-order derivatives involved, accurately 
predicting these nonlinear elements requires the use of our 
modified TBM; use of the conventional TBM leads to 
significant differences compared to the benchmark NEGF data, 
as illustrated by the results in Figs. 4 and 5. 

 
Fig. 5. First derivative of transconductance with respect to gate voltage of the 
graphene field-effect transistor plotted versus gate voltage.  Shown are results 
from the conventional top-of-the-barrier model (dash-dot) and modified top-
of-the-barrier model (solid). The modified TBM shows excellent agreement 
with NEGF data (open circles). 

 
Fig. 6. Nonlinear small-signal equivalent circuit of a ballistic GFET. 

 
Fig. 7. IIP3 versus gate voltage, with the drain voltage held fixed at (a) 0.5 V 
and (b) 0.8V, of the graphene FET compared to its CNFET and MOSFET 
counterparts. 

Once the circuit is formed, the harmonic balance solver in 
Microwave Office [13] can be used to determine the GFET's 

third-order, input-intercept point (IIP3).  Fig. 7 (a) shows that 
for a drain voltage of 0.5 V, the IIP3 of the GFET is 
significantly worse than its CNFET and MOSFET 
counterparts, where the latter have dimensions and an oxide 
capacitance identical to the GFET.  However, by increasing the 
drain voltage to 0.8 V, the linearity can be improved and 
becomes closer to that of CNFETs and MOSFETs, as shown in 
Fig. 7 (b).  Unlike a CNFET and a MOSFET, where the drain 
biasing has a negligible effect on the IIP3, our results show that 
the linearity of GFETs is quite sensitive to the drain bias.  
Further such insights into the linearity and RF behavior of 
graphene-based devices can be obtained by exploiting our 
modified top-of-the-barrier model, and these will be reported 
elsewhere. 

IV. CONCLUSIONS 
We developed a modified top-of-the-barrier model for 

graphene field-effect transistors that includes variations in the 
reservoir versus channel densities of states and band-to-band 
tunneling.  The model shows excellent agreement with state-of-
the-art, quantum-mechanical approaches based on NEGF and 
allows for the development of accurate, practical circuit 
models.  The utility of the new model is demonstrated by 
exploring the RF linearity of graphene transistors.   
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