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Abstract—This paper presents a principal component analysis 
(PCA)-based unified compact modelling strategy for process-
induced and statistical variability in 14-nm double gate SOI 
FinFET technology. There is strong interplay between process 
and statistical variability in FinFET technology and failure to 
capture the correlations between them can lead to an inaccurate 
estimation of overall statistical variability with errors of up to 
30%. Therefore a new unified compact modelling strategy for 
variability, based on comprehensive atomistic simulations within 
the CD corner space, is presented. First, an extended uniform 
compact model is built to capture CD process variation using a 
set of parameters, and then statistical variability is extracted 
using another small set of ‘statistical’ parameters. Later, the 
response of the extracted statistical parameters over the CD 
space is characterised, and finally used in a PCA method to 
generate the unified compact models capturing both process and 
statistical variability over the whole CD variation space. 

Keywords—compact model; FinFET; interplay; PCA; process 
variability; statistical variability 

I.  INTRODUCTION 
After the first introduction of the 3-D FinFET architecture 

at the 22-nm node by Intel [1], it is widely considered as a 
major candidate for 14-nm node mainstream technology by 
many technology providers. FinFETs deliver excellent 
electrostatics and short-channel-effect control, enabling power 
savings, and by tolerating low channel doping can reduce the 
dopant-induced variability. Still, a number of challenges are 
facing FinFET technology, such as deteriorated parasitics and 
width quantization. When new variability sources are brought 
to fin profile patterning such as fin-width variation due to fin-
edge roughness (FER), together with traditional variability 
sources including random discrete dopants (RDDs), gate edge 
roughness (GER), and possible metal gate granularity (MGG), 
statistical variability is still of great concern for FinFET 
process and performance [2][3]. Additionally, the susceptibility 
of FinFETs to variations in key critical dimensions (CD), such 
as fin-width, complicates the variability issue [4]. It is found 
that unlike bulk planar technology, a strong interplay between 
statistical variability and systematic process-induced CD 
variation exists in FinFET technology [4]. Compact modelling 
of statistical variability can provide an advantage in evaluating 
the statistical effect of microscopically different transistors on 
circuit performance. However it is a considerable challenge for 
compact models to accurately replicate the transistor statistical 

variability behaviour using analytical formulae [5]. The strong 
dependence of statistical variability on CD process variation 
further challenges the traditional statistical compact modelling 
strategies. Using a ‘principal component analysis’ technique, 
this paper will present the development of novel unified 
compact modelling strategies taking into account coherently 
the interplay between process-induced and statistical 
variability.  

II. DEVICE DESCRIPTION AND SIMULATION 
METHODOLOGY 

The variability study and compact modelling strategy 
development is carried out on a 14-nm node SOI double-gate 
FinFET which is designed and optimised using the GSS 
atomistic simulator Garand [6]. The FinFET process on SOI 
substrate is simpler than on bulk substrate, since the fin 
patterning is achieved by etching down to the buried oxide 
(BOX). As shown in Figure 1(a), the fin-height is defined by 
the silicon layer thickness on the BOX, which results in much 
less fin-height variation compared to bulk FinFETs [7]. The 
device parameters are shown in Fig. 1(b) featuring 20-nm 
physical gate length and 0.8-nm EOT. High-κ material is used 
for the gate stack, and mid-gap workfunction TiN is adopted as 
the gate metal. An effectively undoped channel (1015 cm-3) and 
high source/drain conformal doping 3×1020 cm-3 are adopted in 
the simulations. The spacer thickness is optimised with respect 
to short-channel effects and series resistance. The drift-
diffusion simulations are calibrated against comprehensive 
Monte-Carlo simulations, shown in Fig. 2. After calibration, 
the source-side velocity is matched for drift-diffusion 
simulations and Monte Carlo simulations for a series of 
devices. Density gradient quantum corrections are essential due 
to the thin fin body. 

Supposedly identical close pairs of nanometre-scale devices 
show differences in key figures of merit, which is due to 
intrinsically random effects beyond the process control. 
Statistical variability sources have been extensively studied by 
experimental data and simulations, including random dopants 
(RDDs), gate and fin line edge roughness (LER), and metal 
gate granularity (MGG) [3]. In the statistical simulations RDDs 
are assigned based on the local continuous doping using a 
rejection technique; LER is generated by Fourier synthesis 
using Gaussian autocorrelation function parameterized by LER 
of 2-nm and correlation length of 30-nm, and uncorrelated 
random traces are assumed for both gate and fin-width; MGG 
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models the work-function variation due to different 
polycrystalline metal grain orientations. Two metal grain 
orientations are modelled with WF difference of 0.2V with 
0.4/0.6 probabilities, and average metal grain diameter of 5-nm 
is used in the simulations. Ensembles of 1000 microscopically 
different atomistic devices for each uniform device are 
simulated using GSS cluster simulation technology. 

III. INTERACTIONS BETWEEN PROCESS AND STATISTICAL 
VARIABILITY IN FINFETS

In this section, the statistical variability of 14-nm DG SOI 
FinFETs obtained from 3-D atomistic simulations is presented. 
The statistical variability of key figures of merit is extracted 
and monitored. First the statistical variability of nominal design 
(LG=20nm, WF=10nm, HF=25nm) is examined. While the 
figures of merit in the combined RDD and LER simulations, 
relevant to gate-last process show close correlation, the drain 
induced barrier lowering (DIBL) (and even ION to some degree) 
in the combined RDD, LER and MGG simulations 
representing gate-first technology, is de-correlated with the rest 
of the figures of merit as shown in Figure 3. Threshold voltage 
is inadequate to fully capture subthreshold variation [8]. 
Therefore the error could be significant when just considering 
threshold voltage fluctuation in a compact model. 

Key critical dimensions for FinFETs include gate length 
LG, fin width WF, and fin height HF. The CD process variations 
(3σ) from nominal design corresponding to process corners are 
assumed to be: ΔLG = ±2 nm; ΔWF = ±2 nm; ΔHF = ±3 nm. 
Comprehensive statistical simulations were carried out at each 
CD process corners and the results covering the CD variation 
space were reported in [4]. The FinFET performance is 
dramatically affected by process deviations. Shown in Fig. 4 
the on-current is proportional to fin height, and also strongly 
depends on the gate length and fin width. The on-current 
increases by 48% from the slow corner (LG=22nm, WF=8nm, 
HF=22nm) to the fast corner (LG=18nm, WF=12nm, HF=28nm). 
Meanwhile, the statistical variability is heavily dependent on 
process variation, clearly shown in Fig. 5 by σVT changing 
from 21.8mV to 34.6mV and σION increasing by ~40% from 
the slow to fast corner. Therefore, the statistical variability is 
greatly affected by the FinFET CD process variations. 

 
Figure 3. The scatter plot of the key FinFET figures of merit for the 
nominal device. The upper-right is for statistical variability sources 

representing gate-last; the bottom-left represents gate-first process [4]. 

 
Figure 4. The ION response to the key CD process variations [4]. 

 
(a) (b)

Figure 5. The statistical variability of (a) VT and (b) ION in the key CD 
process variation space [4]. 
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Figure 1. (a) The schematic view of double-gate SOI FinFET, and (b) 
the device parameter set in the simulations and the performance 

characteristics at 85°C. 
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Figure 2. The average carrier velocity in the channel obtained from 

Monte Carlo (solid lines) and Drift-Diffusion (dashed lines) 
simulations of a series of scaled FinFETs. 
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IV. VARIABILITY COMPACT MODELLING 
The compact model sits at the heart of the process design 

kit (PDK) for circuit simulation and verification [9]. Mystic [6] 
is used to extract uniform and statistical compact models. First 
the nominal compact model is extracted to represent the 
uniform device of nominal design. As shown in Fig. 6, the 
nominal uniform model accurately replicates ID-VG 
characteristics of devices with a series of gate lengths around 
the nominal design. In order to capture the statistical 
variability, direct extraction using a small set of carefully 
selected model parameters based on the nominal uniform 
model usually provides an effective and accurate method in 
bulk planar MOSFET technology [5]. The excellent fitting is 
achieved with average error 2.3%. This statistical compact 
modelling strategy is applied to SOI FinFETs for the range of 
process variations. However, this traditional method fails to 
accurately capture full variability at process corners. With 
statistical variability of VT and ION illustrated in Fig. 7, using 
the traditional statistical compact modelling strategy, the error 
of σVT can reach more than 30% and the error of σION goes 
above 20%. The reasons include the incapability of the uniform 
model to cover process variation, especially fin width. 
Additionally it ignores the dependence of statistical variability 
on CD process variation. Therefore, a novel statistical compact 
modelling strategy is required taking care of the correlation 
between the statistical variability and the process variation. 
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Figure 6. Uniform model card accuracy in reproducing ID-VG transfer 

characteristics of nominal design. 

 
(a)    (b) 

Figure 7. Error plots of standard deviations of (a) VT and (b) ION in the 
process variation space using simple direct approach at VD=0.9V. 

V. PRINCIPAL COMPONENT ANALYSIS METHOD

In this section, we present a novel statistical compact 
modelling strategy using the principal component analysis 
(PCA) technique, taking into account the process variation and 
the interplay of statistical variability and process variability. 
Shown in Fig. 8, the key steps of this unified method includes, 

first, the extended uniform model extraction for CD process 
variation using a small set of parameters based on the nominal 
uniform model; second, the statistical extraction using another 
small set of parameters at process corners and following 
statistical generation of model parameters using PCA. 

 
Figure 8. The unified compact model strategy. 

At first, based on the uniform model originally extracted for 
nominal design, the extended uniform model is extracted using 
a small set of model parameters (Group I). Shown in Fig. 9 
these model parameters are smoothly responding to CD 
variations. Extraction of statistical compact model parameters 
from atomistic simulations at each corner is carried out using 
another small set of ‘statistical’ parameters (Group II). The 
covariances of statistical parameters can also be smoothly fitted 
using quadratic functions in CD space (Fig. 10). 

 
Figure 9. The response of fitting parameters (Group I) to CD variation. 

 
Figure 10. The response of covariance of fitting parameters (Group II) 

to CD variation. 

PCA method decomposes the random multivariants into 
independent components based on their covariances. It can be 
achieved by eigenvalue decomposition as follows:  

′U SU = L    (1) 
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where S is the covariance matrix; U is the orthogonal matrix; L 
is the eigenvalue diagonal matrix after orthogonal 
transformation. Then, statistically generated parameters are 
obtained from L and U assuming independent component 
distributions. In this unified statistical compact modelling 
strategy, given a CD point, the covariance matrix is fed into 
PCA, and finally the statistical parameters are generated for 
this CD point. Shown in Fig. 11, two generated parameters are 
plotted in normal quantile-quantile (QQ) against the extracted 
parameters. PCA is known to easily replicate a normal 
distribution, but fail to reproduce skewed distributions. 
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Figure 11. The QQ plots of generated parameters (Group II) and 
extracted parameters at nominal design (a) and (b); The QQ plots of 

generated parameters at an arbitrary CD point (LG=19nm, WF=11nm, 
HF=26nm), (c) and (d). 

Fig. 12 compares the correlations among model parameters 
obtained by PCA with those from direct extraction. Most of 
them are well maintained. Fig. 13 compares the distribution 
and correlation of major figures of merit of devices, including 
threshold voltage, on-current, and DIBL. The variability 
magnitudes of these figures of merit are well captured despite 
some tail-value departure of ION and DIBL, and the correlations 
are also decently maintained. 

 
Figure 12. The correlations between parameters from extraction 

(black) and PCA generation (red) at nominal design. Numbers are 
corresponding correlation coefficients. 
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Figure 13. QQ plots of figures of merit from atomistic simulations and PCA 
generation (a), (b), (c) and their correlations (d) at nominal design.   

 

VI. CONCLUSIONS 
In this paper we present a PCA-based unified statistical 

compact modelling strategy coherently taking into account the 
interplay of statistical variability and process-induced CD 
variations. Satisfactory accuracy is achieved. It provides a 
simulation framework to evaluate variability impact on the 
circuit performance and yield for FinFET technology.  
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