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Abstract— In this paper we have developed a quantum drift-
diffusion (QDD) and quantum energy-balance (QEB) based
simulator for scaled nanowire devices. Solving the QDD+QEB
along the length of the wire together with Schrodinger equation
across its cross-section allows us to take into account the energy
guantization, velocity overshoot and tunneling. In addition, the
Schrodinger equation reduces the dimensionality of the transport
equations. We also discuss the discretization scheme and
numerical implementation of QDD and QEB. This was then
applied to a specific case of nanowire MOSFET.
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l. INTRODUCTION

boundary conditon of the Bohm potential at the
semiconductor-oxide or semiconductor-air interface and the
use of an empirical constant [1].

Solving the Schrodinger equation across the cross-section
reduces the dimensionality of the equations as the sub-band
energy is invariant is the directions other than along the length.
Solving the Schrodinger equation across the channel gives us
an additional advantage to incorporate any number of sub-band
energies whereas in case of density gradient method (addition
of the Bohm potential to the electrostatic potential) one
considers the first sub-band only [1]. This becomes important
when higher sub-bands make significant contributions to the
total electron density. Since the doping has n+-n-n+ structure,
we have solved the equations for electrons only. The equations

Over the past few years, the search for alternatives to bublse stated below

planar MOSFET has intensified and multi-gate MOSFETSs

have appeared to be the most promising candidates becaus
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excellent electrostatic integrity. Because of extremely smalldr? = rdr

cross-sectional area and channel length, the characteristics
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thesg devices are strongly influenced by the structural—*<—2+ li+ l—z)w—thp=Esblp )
confinement across the channel and quantum and non-lo dr®  rdr T
effects like tunneling and velocity overshoot along thedy
transport direction. In order to capture these effects in g~ =0 (3)
framework, that preserves the connection to the familiar drift-
diffusion, we have developed a simulator for nanowire deviceg _ Z epiisp dEsp + ky d(neT) )
in which we solve the Quantum Drift-Diffusion (QDD) [1] = 7 dz dz
and Quantum Energy Balance (QEB). °

In this work, we have extended the technique of Baccarrarﬂ — ]S_de_Sb — En r-n (5)
[1] to Quantum Energy Balance and this converted 3Dlz <4uq dz 2 P,

Quantum Energy Balance (2D for cylindrical geometry using

the symmetry alonge) to 1D and thus reducing the
computational effort without missing out on most of the
essential physics.

II. FORMALISM
The energy balance equations can be obtained from t
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fhere V is the electrostatic potentiad; is the effective mass,

hydrodynamic equations under suitable approximations [2]. I IS the wave functionf,, is the sub-band energy, is the
this work, we have solved QDD and QEB. The quantun?rder of the Bessel functioff,is the electron temperatung,is

counter parts of classical drift diffusion and energy balanc

the energy relaxation time for an electrau, (mY) is the

differ only by correction factors to the electrostatic potential€ctron concentration in a particular sub-band energynand

(-
2m*Vn

AVn ) and energy terms {%Alog n)).

<te?>

(m?) is the total electron densit§(T) andA(T) are and

<Te>

3 2
However, by solving Schrodinger equation across the channel—— [S== — (SX22)2] respectively as obtained by Stratton

we can replace the sum of the Bohm and electrostatic potent
by the sub-band potential [1]. This avoids the difficult

Tkp)? b <te> <te>
. Vis independent of the angle)(because of the symmetry.
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Figure. 1. Boundary conditions used in the simulation
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Figure 2. Flowchart for simulation of QEB for one bias
point.

2
The corrections to the energy termﬁhmog (n)) is

neglected. The closure for the above equations was provided

Fourier’s law (x(T,,)AT, ) andk(T,
Weidemann-Franz law.

DISCRETIZATIONAND SIMULATION

) can be obtained by usi

All the equations were discretized by using the finite
difference method. For discretizing the transport equation
Generalized Scarfetter-Gummel scheme as derived by Tang
was used. Equations 4 and 6 are first converted ifitorder
linear differential equations for electron density,. Then
under the assumptions that V, T vary linearly and S is almo
constant between two successive nodes, we can determine

integrating factors for QDD and QEB. This leads to
following discretized equation.
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Figure. 3. (a) Schematic of the nanowitransistor. (b) Structu
obtained exploiting cylindrical symmetry, and, (c) halkine

fundamental domain used for simulat
Esb;y, — ESbi) In (Ti+1
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Similarly, we can calculate the expression of AndS, 1 and

2 2
use equations discretized versions of equations (3) and (5) we
can eliminatg andS and calculate; andT;.

Boundary conditions used in the simulation are
summarized in Fig. 1. For Poisson equation, Neumann
boundary condition was used at the source and the drain edges
because using a fixed value of the potential would fix the

otential profile and thus the profile of the electron density.
n ¥so because of symmetry at the centre of the device the
9 potential was assumed be constant. It is assumed that the

Einstein’s relationship§(= %) holds. Laplace equation was
used in order to calculate the electric field in the oxide.

Fig. 2 shows the flowchart of the QEB simulation for one
a:fs point. All the equations were solved by Gummel based
rative scheme. Poisson, carrier continuity, and quantum
energy balance were solved using LU decomposition method
s described in [5]. For faster convergence a relaxation scheme
%r calculating the electron temperature was implemented
o *1 = TJ + q(T/*! — T/)) where the relaxation parameter
was taken to 0.5and j is the iteration number. It is important to
note that the electron density obtained for the carrier continuity
equation has units of while that in the Poisson equation has

th
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Figure 4. (a) Comparison of the electron density in tharid 2°
sub-bands. Similar results are also obtained in [1]. (b) Results from
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: - . — . Figure. 7. Variation in thelsubband along Z for differe
Efnu(;e 5. Probability density of the electrons in tie(d) and 2 (b) sub values of (a) gate and (b) drain voltage.

units of m>. The transformation of the carrier density from perthe electron density and hence the current from the higher sub-
unit length to per unit volume can be done by #46F bands is negligible (Fig. 4 (a))

S nap [Wspl? . This can be explained ag, is the total

electron density in a particular cross-section and sub-band. The IV.. NUMERICAL RESULTS

probability distribution of the electrons in the cross-section is The source and drain doping in the nanowire MOSFET
given byli,|?. All the simulations were done with constant yere assumed assumed to b&18n®and intrinsic channel.
n=500 cni/V-sec andA=5=2. Fig. 6 shows the electron density and potential profile in the
Fig. 3 shows the schematic of a nanowire transistor. Bglevice. As expected, the electron density is maximum in the
exploiting the symmetries of the cylindrical nanowire, thecentre of the device and falls off towards the edges. The plot
actual simulation domain is shown in the Fig. 3(c). Thisof the first sub-band energy for different drain and gate bias is
significantly reduces the computational effort. It is shown inshown in Fig. 7 For larger gate bias the increase in the drain
[7] that for extremely scaled geometries, electron density igyrrent causes significant drop across the source and drain

same irrespective of whether the cross-section is circular Phqi : .

Ay gions (Fig. 7(b)). Comparison of Id-vd and Id-Vg
square. For verification of the code, a NW-MOSFET structure S - . .
having the same cross-sectional area as used by [8] ngaracterlstlcs due to QDD and QEB is shown in the Fig.8. A

simulated the results shown in Fig. 4(a) are in close agreemeti{P-threshold swing of about 80mV/dec is observed. The
with what have been obtained there. Fig. 4(b) shows a TCAgharacteristics  calculated by QDD and QEB differ
simulation [9] illustrating the capability of the density-gradientsignificantly in both the off current and output resistance
method, a derivative of QDD, to model tunneling. For thewhich are important to digital and analog applications
purpose of simulation only one sub-band as the contribution to
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Figure. 9 Electron temperature profile for different (a) d

Figure 8. Comparison of (a) Id-Vd and (b)\d- with QEB ani
QDD.

(2]
respectively. The temperature profile in Fig.9 shows electrons
heated way above the lattice temperature 300K.

V. CONCLUSION (3]

In this paper, we have described the discretization and]
numerical implementation of the Schrodinger, Poisson, and
1D transport (QDD+QEB) equations. It was then applied to ?5]
nanowire MOSFET. It is noted that there is significant
difference between the output and the transfer charateristics of
the device obtained from QDD and QEB equations. (6]
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