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Abstract— In this paper we have developed a quantum drift-
diffusion (QDD) and quantum energy-balance (QEB) based 
simulator for scaled nanowire devices. Solving the QDD+QEB 
along the length of the wire together with Schrodinger equation 
across its cross-section allows us to take into account the energy 
quantization, velocity overshoot and tunneling. In addition, the 
Schrodinger equation reduces the dimensionality of the transport 
equations. We also discuss the discretization scheme and 
numerical implementation of QDD and QEB. This was then 
applied to a specific case of nanowire MOSFET.     
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I.  INTRODUCTION  

Over the past few years, the search for alternatives to bulk 
planar MOSFET has intensified and multi-gate MOSFETs 
have appeared to be the most promising candidates because of 
excellent electrostatic integrity. Because of extremely small 
cross-sectional area and channel length, the characteristics of 
these devices are strongly influenced by the structural 
confinement across the channel and quantum and non-local 
effects like tunneling and velocity overshoot along the 
transport direction. In order to capture these effects in a 
framework, that preserves the connection to the familiar drift-
diffusion, we have developed a simulator for nanowire devices 
in which we solve the Quantum Drift-Diffusion (QDD) [1] 
and Quantum Energy Balance (QEB). 

In this work, we have extended the  technique of Baccarrani 
[1] to Quantum Energy Balance and this converted 3D 
Quantum Energy Balance (2D for cylindrical geometry using 
the symmetry along φ) to 1D and thus reducing the 
computational effort without missing out on most of the 
essential physics. 

II. FORMALISM 

The energy balance equations can be obtained from the 
hydrodynamic equations under suitable approximations [2]. In 
this work, we have solved QDD and QEB. The quantum 
counter parts of classical drift diffusion and energy balance 
differ only by correction factors to the electrostatic potential 
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However, by solving Schrodinger equation across the channel, 
we can replace the sum of the Bohm and electrostatic potential 
by the sub-band potential [1]. This avoids the difficult 

boundary condition of the Bohm potential at the 
semiconductor-oxide or semiconductor-air interface and the 
use of an empirical constant [1].  

Solving the Schrodinger equation across the cross-section 
reduces the dimensionality of the equations as the sub-band 
energy is invariant is the directions other than along the length. 
Solving the Schrodinger equation across the channel gives us 
an additional advantage to incorporate any number of sub-band 
energies whereas in case of density gradient method (addition 
of the Bohm potential to the electrostatic potential) one 
considers the first sub-band only [1]. This becomes important 
when higher sub-bands make significant contributions to the 
total electron density. Since the doping has n+-n-n+ structure, 
we have solved the equations for electrons only. The equations 
are stated below 
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where V is the electrostatic potential, #� is the effective mass, % is the wave function, &'(  is the sub-band energy,  $ is the 
order of the Bessel function, 1 is the electron temperature, 5є is 
the energy relaxation time for an electron, �'( (m-1) is the 
electron concentration in a particular sub-band energy and � 

(m-3) is the total electron density. 7�1� and 
�1� are 
9:є�;
9:є;   and  

�
�<=>�� ?9:є@;

9:є; � �9:є�;
9:є; ��A  respectively as obtained by Stratton 

[3]. V is independent of the angle (φ) because of the symmetry.  
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The corrections to the energy term (
ћ�

�
��� 
log ��� ) is 

neglected. The closure for the above equations was provided by 
Fourier’s law (-к�1	�
1	 ) and к�1	� can be obtained by using 
Weidemann-Franz law. 

III.  DISCRETIZATION AND SIMULATION 

All the equations were discretized by using the finite 
difference method. For discretizing the transport equations, 
Generalized Scarfetter-Gummel scheme as derived by Tang [4] 
was used. Equations 4 and 6 are first converted into 1st order 
linear differential equations for electron density, �'( . Then 
under the assumptions that V, T vary linearly and S is almost 
constant between two successive nodes, we can determine the 
integrating factors for QDD and QEB. This leads to the 
following discretized equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

)CD�� � �/0�1CD� � 1C�
ECD� � EC � &FGCD� � &FGCECD� � EC � 

H.�CD� exp H&FGCD� � &FGC/0�1CD� � 1C� L ln N1CD�1C O � .�CL
exp H&FGCD� � &FGC/0�1CD� � 1C� L ln N1CD�1C O � 1  
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Similarly, we can calculate the expression of )CRS� and 3CRS� and 

use equations discretized versions of equations (3) and (5) we 
can eliminate ) and 3 and calculate �C and 1C.  

 Boundary conditions used in the simulation are 
summarized in Fig. 1. For Poisson equation, Neumann 
boundary condition was used at the source and the drain edges 
because using a fixed value of the potential would fix the 
potential profile and thus the profile of the electron density. 
Also because of symmetry at the centre of the device the 
potential was assumed be constant. It is assumed that the 

Einstein’s relationship (
!
T � =><

� ) holds. Laplace equation was 

used in order to calculate the electric field in the oxide.    

Fig. 2 shows the flowchart of the QEB simulation for one 
bias point. All the equations were solved by Gummel based 
iterative scheme. Poisson, carrier continuity, and quantum 
energy balance were solved using LU decomposition method 
as described in [5]. For faster convergence a relaxation scheme 
for calculating the electron temperature was implemented 
(1UD� � 1U � V�1UD� � 1U�) where the relaxation parameter α 
was taken to 0.5and j is the iteration number. It is important to 
note that the electron density obtained for the carrier continuity 
equation has units of m-1 while that in the Poisson equation has  
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Figure. 1.  Boundary conditions used in the simulation 
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Figure 2. Flowchart for simulation of QEB for one bias 
point. 

Figure. 3.  (a) Schematic of the nanowire transistor. (b) Structure 
obtained exploiting cylindrical symmetry, and, (c) half-plane 
fundamental domain used for simulation. 
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units of m-3. The transformation of the carrier density from per 
unit length to per unit volume can be done by [6] � �∑ �'('( |%'(|� . This can be explained as �'(  is the total 
electron density in a particular cross-section and sub-band. The 
probability distribution of the electrons in the cross-section is 
given by |%'(|�. All the simulations were done with constant 
µ=500 cm2/V-sec and ∆=δ=2. 

Fig. 3 shows the schematic of a nanowire transistor. By 
exploiting the symmetries of the cylindrical nanowire, the 
actual simulation domain is shown in the Fig. 3(c). This 
significantly reduces the computational effort. It is shown in 
[7] that for extremely scaled geometries, electron density is 
same irrespective of whether the cross-section is circular or 
square. For verification of the code, a NW-MOSFET structure 
having the same cross-sectional area as used by [8] was 
simulated the results shown in Fig. 4(a) are in close agreement 
with what have been obtained there. Fig. 4(b) shows a TCAD 
simulation [9] illustrating the capability of the density-gradient 
method, a derivative of QDD, to model tunneling. For the 
purpose of simulation only one sub-band as the contribution to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the electron density and hence the current from the higher sub-
bands is negligible (Fig. 4 (a)) 

IV.  NUMERICAL RESULTS 

 The source and drain doping in the nanowire MOSFET 
were assumed assumed to be 1020 cm-3 and intrinsic channel. 
Fig. 6 shows the electron density and potential profile in the 
device. As expected, the electron density is maximum in the 
centre of the device and falls off towards the edges. The plot 
of the first sub-band energy for different drain and gate bias is 
shown in Fig. 7 For larger gate bias the increase in the drain 
current causes significant drop across the source and drain 
regions (Fig. 7(b)). Comparison of Id-Vd and Id-Vg 
characteristics due to QDD and QEB is shown in the Fig.8. A 
sub-threshold swing of about 80mV/dec is observed. The 
characteristics calculated by QDD and QEB differ 
significantly in both the off current and output resistance 
which are important to digital and analog applications 
 

 

 

 

Figure 4. (a) Comparison of the electron density in the 1st and 2nd 
sub-bands. Similar results are also obtained in [1]. (b) Results from 
Sentaurus indicating tunneling effect through a single barrier.  

 

Figure 5. Probability density of the electrons in the 1st (a) and 2nd (b) sub-
band. 

 

Figure 6. (a) Electron density and (b) Potential profile in the nanowire 
transistor for Vd=0.1V and Vg=0.1V  

 

 

Figure. 7. Variation in the 1st sub-band along Z for different 
values of (a) gate and (b) drain voltage.  
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respectively. The temperature profile in Fig.9 shows electrons 
heated way above the lattice temperature 300K.    

V. CONCLUSION   

   In this paper, we have described the discretization and 
numerical implementation of the Schrodinger, Poisson, and 
1D transport (QDD+QEB) equations. It was then applied to a 
nanowire MOSFET. It is noted that there is significant 
difference between the output and the transfer charateristics of 
the device obtained from QDD and QEB equations.  

. 
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Figure 8. Comparison of (a) Id-Vd and (b) Id-Vg with QEB and 
QDD.  
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Figure. 9. Electron temperature profile for different (a) drain 
and (b) gate bias. 
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