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Abstract—The potential of reduction of power consumption and 
the growth of computational speed achieved by scaling of 
semiconductor devices is close to exhaustion. Utilizing spin 
properties of electrons might provide an opportunity for further 
improvement of the properties of microelectronic-based devices. 
Since silicon is the main material currently used in 
microelectronics, we investigate the properties of silicon films 
and surface layers with respect to their potential applications for 
spin-based devices.  We calculate the electron subband splitting, 
the surface roughness-induced scattering, and the spin relaxation 
matrix elements in a silicon-on-insulator spin field-effect 
transistor for various parameters by applying the perturbative 
k·p approach and the linear combination of bulk bands method. 
Shear strain dramatically reduces the spin relaxation matrix 
elements promising a new opportunity to boost the spin lifetime 
in a silicon spin field-effect transistor. 

Spin relaxation in silicon, k·p method, spin-orbit interaction, 
empirical pseudopotentials, shear strain, surface roughness, spin 
MOSFET 

I.  INTRODUCTION 

Spintronics attracts at present much interest because of 
opening new concepts for spin-based devices which might be 
superior to charge based devices. Promising results have been 
already obtained by utilizing the spin properties of electrons. In 
order to achieve significant advantages by utilizing spin, 
materials possessing a long spin life-time and low relaxation 
rate must be used.  

Silicon is composed of nuclei with predominantly zero spin 
and characterized by weak spin-orbit coupling. Thus, it is a 
plausible material for spin-based applications. However, the 
relatively fast spin relaxation observed in electrically gated 
lateral-channel silicon structures [1] could be an obstacle in 
realizing spin-driven devices. A deeper understanding of 
fundamental spin relaxation mechanisms in silicon is urgently 
needed [2], [3]. 

In this work we investigate the influence of shear strain and 
electric field on the subband structure and the spin relaxation 
matrix elements due to surface roughness scattering. To 
accurately describe the band structure in silicon in the presence 
of the intrinsic spin-orbit interaction two different methods are 
used – the empirical pseudopotential method [4] and the 
perturbation k·p method [2], [4]. Both methods require a small 

number of input parameters which are obtained from 
experimental results. The advantage of the empirical 
pseudopotential method is that it is applicable for both valence 
and conduction bands up to electron (hole) energies of a few 
eVs. However, the k·p method requires less computational 
effort. 

First, we generalize the perturbative k·p approach [2], [5] to 
include the spin-orbit interaction. An effective 4x4 
Hamiltonian including spin is obtained in the vicinity of the  
X-point. In contrast to [2], our 4x4 Hamiltonian contains only 
the two lowest conduction bands for each pair of the valleys. It 
turns out that within this model the unprimed subbands 
resulting from the valleys along the ��  axes in an unstrained 
(001) film, are degenerate without spin-orbit effects included. 
An accurate inclusion of the spin-orbit interaction results in a 
large mixing between the spin-up and spin-down states, 
resulting in spin hot spots along the [100] and [010] axes 
characterized by strong spin relaxation due to the spin-orbit 
coupling. These hot spots should be contrasted with the spin 
hot spots appearing in the bulk system [2], [6]. Their origin lies 
in the unprimed subband degeneracy in a confined electron 
system which effectively projects the bulk spin hot spots at the 
edge of the Brillouin zone to the center of the 2D Brillouin 
zone.  

Shear strain lifts the degeneracy between the unprimed 
subbands [5]. The energy splitting between the otherwise 
equivalent subbands removes the origin of the spin hot spots in 
a confined silicon system, which should substantially improve 
the spin lifetime in gated silicon systems. 

II. THE K·P MODEL 

The generalized Hamiltonian including the spin-orbit 
interaction is written in the vicinity of the high-symmetry 
point X. The basis is chosen as 

 

��
�� (��, ↑)(��, ↓)(�
�, ↑)(�
�, ↓)��

��, (1) 

where ↑ and ↓ indicate the spin projection at the quantization 
z – axis.  
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Figure 1.  Empirical pseudopotential calculations of the spin-orbit interaction 
strength by evaluating the gap opening at the X-point between the X1 and X2’ 

bands for finite kx. 
 

The spin-orbit term ��⨂(���� − ����) with  

 ��� = 2 �∑ � !"#$"%&�%"'()×#+$" ,-	&/01/2 �, (2) 

couples the states with the opposite spin projections from the 
opposite valleys. Here ��  and ��  are the spin Pauli matrices 
and �� is the 3-Pauli matrix in the valley degree of freedom.  

The effective Hamiltonian reads as 

 4 = 	 54� 46467 4
8, (3) 

where 4�, 4
, and 46	are written as 

 49 = 		 :ℏ,<=,
>? + (1�)$ℏ,<A<=>? + ℏ,(<B,C<D,)
>E + F(G)H I,  (4) 

 46 = 		 J				 KL�� − ℏ,<B<DM N�� − ��OP∆RS
N−�� − ��OP∆RS KL�� − ℏ,<B<DM

	T,     (5) 

Here U = 1, 2 numbering the electron bands, I is the identity 2x2 
matrix, mt and ml are the transversal and the longitudinal 
silicon effective masses,	�V  = 0.15 × 2[/] is the position of 
the valley minimum relative to the X point in unstrained 
silicon, L��  denotes the shear strain component, ^1� ≈ `a1� − `V1� , and D = 14eV is the shear strain 
deformation potential. F(G) is the confinement potential. 

III.  RESULTS AND DISCUSSION 

Since the spin-dependent term in the electron effective 
Hamiltonian (3) is a linear function of the wave vector k, the 
proportionality factor (ΔRS) characterizing the strength of the 
spin-orbit interaction in the conduction band can be found by 
applying the empirical pseudopotential method. Fig. 1 shows 
the linear fit with ΔRS = 1.27meVnm to the gap opening at the 
X-point between the ��and �
� bands for finite ��	computed by 
the empirical pseudopotential method. The value is close to the 
one reported by Li and Dery [2]. 

 
Figure 2.  Dependence of the valley splitting on the wave vektor k, for a film 

of 2nm thickness, the shear strain value is 0.5%. 

 
Figure 3.  Splitting between the lowest two electron subbands as a function of 

well width for a shear strain value of 0.5%. 

First we investigate the splitting between the equivalent 
valleys. Fig. 2 shows the splitting between the lowest unprimed 
electron subbands as a function of the wave vector k taken 
along [110] and [-110] directions in a confined system. The 
results computed by the linear combination of bulk bands 
(LCBB) method [7] and the perturbative k·p approach are 
shown. For the [-110] direction the dependence is smooth 
without any sharp features. For the curves calculated along 
[110] direction a sharp decrease of the splitting is observed. 
Although the positions of the minima calculated by the k·p and 
by the LCBB methods do not match completely, the agreement 
is quite spectacular.  

The valley splitting in a quantum well as a function of the 
well width is shown in Fig. 3. We chose the in-plane wave 
vector k along the [110] direction. The results for the wave 
vectors with the components �� =0.1nm-1, �� =0.1nm-1 and �� = 1nm-1, �� = 1nm-1 are shown for convenience. As 
predicted [8], [9], the valley splitting develops sharp minima 
for small values of k. For larger k the valley splitting computed 
with the k·p method decays monotonically when the film 
thickness is increased. Results obtained by the LCBB method  
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Figure 4.  Splitting of the lowest conduction subbands as a function of shear 
strain for different values of the electric field, the quantum well thickness is 

4nm, the conduction band offset is 4eV, �� = 0.5nm-1, �� = 0.1nm-1. 
 

are in good agreement with those obtained by the k·p approach. 
We therefore present below only the results obtained by the k·p 
method. 

Now we investigate the effect of shear strain on the valley 
splitting and spin relaxation due to scattering induced by 
surface roughness. We assume the spin is injected parallel to 
the [110] direction throughout the calculations. Fig. 4 shows 
the dependence of the valley splitting on strain, for the values ��  and ��  being 0.5nm-1 and 0.1nm-1, respectively. Without 
electric field the valley splitting reduces significantly around 
the strain values 0.116% and 0.931% as shown in Fig.4. With 
an applied electric field the minimum around the strain value 
0.931% becomes smoother, however, for a strain value around 
0.116% the sharp reduction of the valley splitting is preserved. 
For larger field values the valley splitting reduction around the 
value 0.931% vanishes completely. For the strain value 0.116% 
the sharp reduction of the valley splitting is still preserved with 
the bottom value, which is determined by the spin-orbit 
interaction, only slightly affected by the field. The splitting 
between subbands depends on KL�� − ℏ
����/^ [4] and the 
degeneracy between the unprimed subbands is lifted, when this 
term is nonzero. For ��  = 0.5nm-1, ��  = 0.1nm-1 the strain 
value 0.116% makes the subbands degenerate, in good 
agreement with the first sharp valley splitting reduction in 
Fig. 4. The valley splitting is also proportional to |sin(�g)| [4], 
[8], [9], where t is the film thickness and k is a function of ��, ��, and L��. The second minimum in valley splitting around 
the strain value 0.931% in Fig. 4 is because of the zero value of 
the |sin(�g)| term.  

The matrix elements of spin relaxation are computed in a 
standard way to be proportional to a product of the wave 
functions with the spin up and spin down derivatives [2] at the 
interfaces. Fig. 5 and Fig. 6 show the spin relaxation matrix 
elements (normalized to intravalley scattering at zero strain) on 
the angle between the incident and scattered wave vectors 
together with the valley splitting for the scattered wave. 
Oscillations of the valley splitting are observed. In Fig. 5 the 
sharp increase of the relaxation matrix element is correlated  
 

 
Figure 5.  Dependence of the normalized spin relaxation matrix elements and 

valley splitting on the angle between the incident and scattered waves. The 
quantum well thickness is 4nm, the conduction band offset is 4eV, �� = 0.5nm-1, �� = 0.1nm-1, hijklm = 0MV/cm, L�� = 0.01%. 

 
Figure 6.  Dependence of the normalized spin relaxation matrix elements and 

valley splitting on the angle between the incident and scattered waves. The 
quantum well thickness is 4nm, the conduction band offset is 4eV, �� = 0.5nm-1, �� = 0.1nm-1, hijklm = 0MV/cm, L�� = 0.92%. 

with the reduction of the valley splitting which occurs for the 
values of the angle determined by zeroes of the KL�� − ℏ
����/^ term. This is the condition of the formation 
of the so called spin hot spots characterized by the maximum 
spin mixing. In contrast to Fig. 5, the valley splitting reduction 
due to the |sin(�g)| term shown in Fig. 6 does not lead to a 
sharp increase of the spin relaxation matrix elements. 

Fig. 7 and Fig. 8 show the dependences on strain and 
electric field of the matrix elements for the intra-subband and 
inter-subband scattering. The intra-subband scattering matrix 
elements have two decreasing regions shown in Fig. 7. These 
regions are correlated with the valley splitting minima in 
Fig. 4. For higher fields the second decreasing region around 
the shear strain value of 0.931% vanishes. For an electric field 
of 0.5MV/cm the intra-subband matrix elements are sharply 
reduced only for the shear strain value of 0.116%.  At the same 
time, the inter-subband matrix elements show a sharp increase 
around the shear strain value of 0.116%. The electric field does 
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Figure 7.  Intravalley scattering matrix elements normalized by their values 
for zero strain as a function of shear strain for different electric field values. 

 

 
Figure 8.  Intervalley scattering matrix elements normalized to the value of 
the intravalley scattering at zero strain as a function of strain for different 

electric field values. 
 

not affect much the valley splitting provided by the zero value 
of the term KL�� − ℏ
����/^, and the sharp increase in the 
inter-subband matrix elements is observed at higher fields as 
well. At the same time the electric field washes out a narrow 
minimum around the shear strain value of 0.931% in Fig. 8. 
With increasing electric field the confinement pushes the 
carriers closer to the interface, which results in higher inter- 
and intra-subband scattering matrix elements. 

The spin relaxation matrix elements increase until the 
strain value 0.116%, the point determined by the spin hot spot 
condition (Fig.9). Applying strain larger than 0.116% 
suppresses spin relaxation significantly, for all values of the 
electric field. Contrary to the scattering matrix elements 
(Fig. 7 and Fig. 8), the relaxation matrix elements exhibit a 
sharp feature only for the shear strain value of 0.116% at zero 
electric field. A large electric field leads to an increase of the 
relaxation matrix elements due to the additional field-induced 
confinement resulting in higher values of the surface 
roughness induced spin relaxation matrix elements. 
 

 
Figure 9.  Normalized spin relaxation matrix elements dependence on shear 
strain for several values of the electric field for �� = 0.5nm-1, �� = 0.1nm-1. 

 

IV.  CONCLUSION 

We have investigated the lowest unprimed electron 
subband splitting in a thin film of an SOI-based spin field-
effect transistor by the perturbative k·p approach and by the 
linear combination of bulk bands method. We have included 
the spin-orbit interaction effects into the effective low-energy 
k·p Hamiltonian and have shown a good agreement between 
the empirical pseudopotential method and the k·p approach. 
Applying the k·p method we have demonstrated that the 
valley splitting minima due to zero values of the |sin(�g)| 
term can be removed by an electric field, while the minimum 
due to KL�� − ℏ
����/^ = 0  is preserved even for large 
electric fields. We have shown that, due to the inter-subband 
splitting increase, the matrix elements for spin relaxation 
decrease rapidly with shear strain. Thus, shear strain used to 
enhance electron mobility can also be used to boost spin 
lifetime. 
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