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Abstract—We study numerically the effect of mechanical two electrodes. We further assume that one of the electrodes
twisting on the geometrical and electronic properties of graphene s allowed to change its angle along the axis threading through

nanoribbon (GNR) devices. By employing the tight-binding he riphon with respect to the other electrode.
molecular dynamics method for structural relaxation calculations

in the presence of twisting, we found that the geometry of the ) o )
twisted GNR changes abruptly when the twisting angle exceeds B. Tight binding molecular dynamics method

a threthold angle. Moreover it has been found that such twisting in th | f . .
induced abrupt change in the geometry of AGNR can actually In order to obtain the stable structure for a given twisting

cause the abrupt change in the electronic property as well. angle, we employ the structural relaxation based on the tight-

| INTRODUCTION binding molecular dynamics (TBMD) method [8], [9], where

) the electronic energy is calculated quantum mechanically start-

Since the experimental success in the exfoliation of singl,eg from the sp tight binding Hamiltonian, while the repulsive

layer graphene (SLG) in 2004 [1], [2], [3], various types Ofnergy due mainly to ion-ion interaction is calculated using the
graphene based new functional devices have been proposgfkwise potential. The TBMD method is advantageous over
including the bi-layer graphene transistors, graphene nanoiéisssical bond order potential method since it allows us to
bon transistors, spin filters, gas sensors, pressure sensors,saf@llate the mechanical and electronics properties of AGNR
so on [4], [5], [6], [7]. Among these interesting devices basegh the equal footing. Moreover, in order to treat the large
on graphene, the idea to engineer the electronic propertiesfnber of atoms contained in AGNR within the framework
introducing the mechanical deformation is especially impogf TBMD, we also employ the ordei algorithm based on the
tant since it is one of special features which can be mQsgrmj operator expansion (FOE) method. Below we describe
flexibly designed if we use graphene as base materials. Havi§igefly these calculation method. The electronic structure in
motivated by such interesting properties of graphene, hejisted GNRs can basically be obtained by diagonalizing the
we study another graphene based electromechanical devieggndard two-center TB Hamiltonia‘di;%(rij), wherea (3) is
the twisted graphene nanoribbon (GNR) devices, where tf} index of the atomic orbital in the(j)th atom in the system.
electronic properties of GNR are expected to be modulated @yice we calculate the energy eigenvalues (band structure) of
changing the twisting angle. the above Hamiltonian, the total energy of the system is given
following the TBMD scheme as

Etot - Ebs + Erep: (1)
p where E is the band structure energy atd., is the re-
~ pulsion energy. Herés,s and E,,, are respectively calculated
twisting as
En —
E ond — 2 n ) 2
bond ;5 f( ksT ) )

Fig. 1. Schematic illustrations of our model, where an armchair edged GNR

(AGNR) is suspended in between two electrodes, and one of the electrodes
is allowed to change its angle along the axis threading through AGNR with Erep = Z fpoly Z (b(rij) )
i J

respect to opposite electrode.

In Eq. (2) f(E) is the Fermi distribution functiors,, the single

particle energies obtained from the TB Hamiltonian, arithe

A. Model of twisted graphene nanoribbon devices Fermi energy, whereas in Eq. (8}r;;) is a pairwise potential
Figure 1 is the schematic illustration of our model, whereetweenith and jth atoms, andf,.i,(x) is a 4th polynomial

an armchair edged GNR (AGNR) is suspended in betwe&mction introduced for parameter fittings. Then the total force

Il. MODEL AND METHOD
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acting on theith atom is obtained as where

N
9 9 b D = 670
- %5 -9 (B — FY L e pur(H)= 1+ ) aTi(H). (11)
F; OR, Eiot OR,; (Ebs + Erep) F7, + Fz ) (4) F 2 ;
where the 1st term in the RHS can be calculated efficiently Bgre v, is the order of polynomial, and is roughly chosen
the Hellman-Feynman force as
Emax — €min
. OH en — By Npl =~ 5 (12)
FP = Ul 2 | U ) f [ kT
; Z< I, >f( T ) (5)

n With € ax(min) the maximum (minimum) energy eigenvalue
with [,,) being thenth eigenstate of the TB Hamiltonian.iN the system, and, is the Chebyshev expansion coefficient.
Once the total force acting on theh atom is obtained, the Chebyshev matrix polynomial;(H) satisfies the following

MD calculation can be performed by solving the Newton’§currence relations

equations To(H) =1,
M, dZR;(t) _ i), (©) T,(H) = H, (13)
dt Ty (H) = 2HTy(H) — Ti-1 (H),

for eachith atom with the masd/; by applying the standard ) . ) .
velocity Verlet method, in which we employed the velocityVherel is the identity matrix. The colomn of the matif(H)
scaling algorithm to control the kinetic temperature of th@ith the atomic orbital indices a) is calculated as
system. Then the structural relaxation can be performed by 1t2) = |pia),
lowering the kinetic temperature gradually to zero until the L) = Hpya) (14)
total energyE,. is converged. i Pice)

ltich) = 2H|ti,) — ti; "),

C. Fermi operator expansion method ] ) o
where|y;,) is a unit vector with itgath element equal to one

In the conventional TBMD method, the energy eigenvalu&ld zero otherwise. In the FOE method, the band structure
ey, IS calculated by diagonalizing the TB Hamiltonian. There; '

. . . : . “energy is expressed as
fore the required computational time for TBMD simulation is
basically proportional tav3,,,, with Nom being the number Eps =2 E (Pia| HE |0i0) = 2 § (Hpio fia), (15)

of atom contained in the system. In our study, to treat the large

number of atoms contained in AGN_R within the framework (_Vvhich can be decomposed into the contributions due to the
TBMD, we employ the ordefN algorithm based on the Fermig,ch ith atom. Once the vectopt!, ) is obtained,|f;.) is
operator expansion (FOE) method [10], [11]. In FOE methogyiained as

the bandstructure energy,s is directly calculated by using

1o

the Fermi operatof as | fia) = Flia) = pu,r(H)|pia)
Ny
By = 2Tx [HF, 7] =2 (i HF, 7l0ia),  (7) = %Olt?d +> alth,). (16)

=1
yvhere|<pm>_|s the atomi orbital. I-_|ere the Ferm_l operafqr The bond force acting on thgth atom is also expressed in
is formally introduced as a matrix representation of the Ferirms of the localized orbitdlp;a) as
distribution function as
aE‘bs,
F; = -
: 8) OR;

0
= =2 i HF i
Em aRj(w |HF|pia)

H-—p
kT

FM,T:f

where the energy argument in the Fermi distribution func-
tion has been formally replaced by the Hamiltonian operator , OH

H. Fermi operator becomes a diagonal matrix when it is = *QZ@WHPMT(H) +Hpu,T(H)}aRj|‘f%>'
represented by the energy eigenvector basis set as “ 17)

En —
k

<qln|FpT|\I/m> = f 6n,m7 (9)

. . . Ill. RESULTS ANDDISCUSSIONS
wheree,, is thenth eigenvalue of the Hamiltoniaf, and¥,,

is the corresponding eigenvector. In the actual calculatio S,Flg_ure Z;hﬁws thei FOtaI energyto; (r']'e" the Slémd(;_f t_he .
the matrix repesentation of the Fermi distribution function I&On ing and the repulsion energy) of the suspended finite size

obtaind via the Chebyshev polynomial expansion as GNRs with various.widthSV (:.7’.9’ 11) and the fixed Iength
M = 22 as a function the twisting angle, where the width

Fuor=pur(H), (10) N is the number of carbon atoms along the width direction,
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Fig. 4. Relaxed geometrical structures of twisted22 AGNRs with various

) . . . . twisti les. H ill h ical I h
Fig. 2. Twisting angle dependence of the total energy in AGNRs with varlo%viljgggsaeré%;: of eArémvssl ustrated the geometrical structure only around the

widths N.
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Fig. 5. Band structure of twisted 922 AGNR with the twisting parameter
T7W=1.55. Hereq is the length of the unit cell.

Fig. 3. Abrupt geometrical transition from the ribbon like geometry at7#20
the tube like geometry at 780for N=11. Here we illustrated the geometrical
structure only around the middle section of AGNRs.

E-E; [eV]

while the lengthM is the number of unit cells along the
transport direction. As seen in this figure, the calculated toi
energy increases first as increasing the twisting angle, but tf
it shows a small abrupt drop-off at a specific twisting angl :
that depends on the ribbaN (e.g., at around = 720° for ka/m

N = 11). Such abrupt drop-off of the total energy actually

corresponds to the abrupt change in the geometry of th@ 6. Band structure of twisted 922 AGNR with the twisting parameter
twisted AGNR. That is, an AGNR can be twisted keeping itsi'=1.62. Hereu is the length of the unit cell.

ribbon like quasi-flat geometry only until a critical twisting

angle (Fig. 3, left), over which the ribbon is suddenly rolled

up to form tube like geometry (Fig. 3, right), resulting intgroperties.

the sudden decrease of the total energy. Further twisting ofin order to understand the influence of the abrupt geometri-
the AGNR causes more clear drop-off of the total energy e&l change seen in Fig. 3, we next consider the band structure
aroundd = 1170° for N = 11, which obviously corresponds estimated from the quasi periodic geometrical structure near
to the collapse of the structure. Similar abrupt geometrictle middle region of twisted AGNR. Here we assumed that the
transition is seen also fof x 22 (N = 7, M = 22) AGNR twisting induced curvature is enough small so that the Bloch’s
as seen in Fig. 4. Then the next question is how such abrtptorem is approximately valid even in the presence of the
change in the geometry of AGNRs influences their electroniwisting, and thus the wavefunctions in two equivalent atoms
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14 v 8, we can observe that twisted and stretched GNRs show

qualitatively the same band gap modulation up to a critical

z . value of 71V, over which they started to show rather different
E os behaviors. Obviously, such critical valuedfi” corresponds to
> the geometrical transition from the ribbon like geometry to the
208 tube like geometry in the twisted case. Therefore, it is found
S o4 f N that the twisting induced abrupt change in the geometry of
02 \\/_/ AGNR can actually cause the abrupt change in the electronic
property as well.

0
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IV. CONCLUSION

We have studied numerically the effect of mechanical twist-
tﬁ‘i’g on the geometrical and electronic properties of graphene
nanoribbon (GNR) devices. By employing the tight-binding

Fig. 7. Calculated band gap observed in the central region of the twis
AGNR as a function of the twisting parametelV (see the text).

‘4 molecular dynamics method for structural relaxation calcula-
o —7x22 tions in the presence of twisting, we found that the geometry
—ex22 of the twisted GNR changes abruptly when the twisting angle
tr 11>z exceeds a threshold angle. Moreover it has been found that
08 such twisting induced abrupt change in the geometry of AGNR

06 can actually causes the abrupt change in the electronic property

\ as well.
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