
Tight-binding molecular dynamics study of
mechanical and electronic properties in

twisted graphene nanoribbons
Satofumi Souma†, Shozo Kaino, and Matsuto Ogawa

Department of Electrical and Electronic Engineering, Kobe University, Kobe 657-8501, Japan
†email: ssouma@harbor.kobe-u.ac.jp

Abstract—We study numerically the effect of mechanical
twisting on the geometrical and electronic properties of graphene
nanoribbon (GNR) devices. By employing the tight-binding
molecular dynamics method for structural relaxation calculations
in the presence of twisting, we found that the geometry of the
twisted GNR changes abruptly when the twisting angle exceeds
a threthold angle. Moreover it has been found that such twisting
induced abrupt change in the geometry of AGNR can actually
cause the abrupt change in the electronic property as well.

I. I NTRODUCTION

Since the experimental success in the exfoliation of single
layer graphene (SLG) in 2004 [1], [2], [3], various types of
graphene based new functional devices have been proposed,
including the bi-layer graphene transistors, graphene nanorib-
bon transistors, spin filters, gas sensors, pressure sensors, and
so on [4], [5], [6], [7]. Among these interesting devices based
on graphene, the idea to engineer the electronic properties by
introducing the mechanical deformation is especially impor-
tant since it is one of special features which can be most
flexibly designed if we use graphene as base materials. Having
motivated by such interesting properties of graphene, here
we study another graphene based electromechanical devices,
the twisted graphene nanoribbon (GNR) devices, where the
electronic properties of GNR are expected to be modulated by
changing the twisting angle.

Fig. 1. Schematic illustrations of our model, where an armchair edged GNR
(AGNR) is suspended in between two electrodes, and one of the electrodes
is allowed to change its angle along the axis threading through AGNR with
respect to opposite electrode.

II. M ODEL AND METHOD

A. Model of twisted graphene nanoribbon devices

Figure 1 is the schematic illustration of our model, where
an armchair edged GNR (AGNR) is suspended in between

two electrodes. We further assume that one of the electrodes
is allowed to change its angle along the axis threading through
the ribbon with respect to the other electrode.

B. Tight binding molecular dynamics method

In order to obtain the stable structure for a given twisting
angle, we employ the structural relaxation based on the tight-
binding molecular dynamics (TBMD) method [8], [9], where
the electronic energy is calculated quantum mechanically start-
ing from the sp3 tight binding Hamiltonian, while the repulsive
energy due mainly to ion-ion interaction is calculated using the
pairwise potential. The TBMD method is advantageous over
classical bond order potential method since it allows us to
simulate the mechanical and electronics properties of AGNR
on the equal footing. Moreover, in order to treat the large
number of atoms contained in AGNR within the framework
of TBMD, we also employ the order-N algorithm based on the
Fermi operator expansion (FOE) method. Below we describe
briefly these calculation method. The electronic structure in
twisted GNRs can basically be obtained by diagonalizing the
standard two-center TB HamiltonianHij

αβ(rij), whereα (β) is
the index of the atomic orbital in thei (j)th atom in the system.
Once we calculate the energy eigenvalues (band structure) of
the above Hamiltonian, the total energy of the system is given
following the TBMD scheme as

Etot = Ebs + Erep, (1)

whereEbs is the band structure energy andErep is the re-
pulsion energy. HereEbs andErep are respectively calculated
as

Ebond = 2
∑
n

εnf

(
εn − µ

kBT

)
, (2)

Erep =
∑
i

fpoly

∑
j

φ(rij)

 . (3)

In Eq. (2)f(E) is the Fermi distribution function,εn the single
particle energies obtained from the TB Hamiltonian, andµ the
Fermi energy, whereas in Eq. (3)φ(rij) is a pairwise potential
betweenith andjth atoms, andfpoly(x) is a 4th polynomial
function introduced for parameter fittings. Then the total force
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acting on theith atom is obtained as

F i = − ∂

∂Ri
Etot = − ∂

∂Ri
(Ebs + Erep) = F bs

i + F rep
i , (4)

where the 1st term in the RHS can be calculated efficiently as
the Hellman-Feynman force

F bs
i =

∑
n

〈
Ψn

∣∣∣∣ ∂H∂Ri

∣∣∣∣Ψn

〉
f

(
εn − EF

kBT

)
, (5)

with |Ψn〉 being thenth eigenstate of the TB Hamiltonian.
Once the total force acting on theith atom is obtained, the
MD calculation can be performed by solving the Newton’s
equations

Mi
d2Ri(t)

dt2
= F i(t), (6)

for eachith atom with the massMi by applying the standard
velocity Verlet method, in which we employed the velocity
scaling algorithm to control the kinetic temperature of the
system. Then the structural relaxation can be performed by
lowering the kinetic temperature gradually to zero until the
total energyEtot is converged.

C. Fermi operator expansion method

In the conventional TBMD method, the energy eigenvalue
εn is calculated by diagonalizing the TB Hamiltonian. There-
fore the required computational time for TBMD simulation is
basically proportional toN3

atom with Natom being the number
of atom contained in the system. In our study, to treat the large
number of atoms contained in AGNR within the framework of
TBMD, we employ the order-N algorithm based on the Fermi
operator expansion (FOE) method [10], [11]. In FOE method,
the bandstructure energyEbs is directly calculated by using
the Fermi operatorF as

Ebs = 2Tr [HFµ,T ] = 2
∑
iα

〈ϕiα|HFµ,T |ϕiα〉, (7)

where|ϕiα〉 is the atomi orbital. Here the Fermi operatorFµ,T

is formally introduced as a matrix representation of the Fermi
distribution function as

Fµ,T = f

[
H − µ

kT

]
, (8)

where the energy argumentE in the Fermi distribution func-
tion has been formally replaced by the Hamiltonian operator
H. Fermi operator becomes a diagonal matrix when it is
represented by the energy eigenvector basis set as

〈Ψn|Fµ,T |Ψm〉 = f

[
εn − µ

kT

]
δn,m, (9)

whereεn is thenth eigenvalue of the HamiltonianH, andΨn

is the corresponding eigenvector. In the actual calculations,
the matrix repesentation of the Fermi distribution function is
obtaind via the Chebyshev polynomial expansion as

Fµ,T = pµ,T (H), (10)

where

pµ,T (H) ≡ c0
2
I +

Npl∑
l=1

clTl(H). (11)

HereNpl is the order of polynomial, and is roughly chosen
as

Npl '
εmax − εmin

kT
, (12)

with εmax(min) the maximum (minimum) energy eigenvalue
in the system, andcl is the Chebyshev expansion coefficient.
Chebyshev matrix polynomialTl(H) satisfies the following
recurrence relations

T0(H) = I,

T1(H) = H, (13)

Tl+1(H) = 2HTl(H)− Tl−1(H),

whereI is the identity matrix. The colomn of the matrixTl(H)
with the atomic orbital indices (i,α) is calculated as

|t0iα〉 = |ϕiα〉,
|t1iα〉 = H|ϕiα〉, (14)

|tl+1
iα 〉 = 2H|tliα〉 − |tl−1

lα 〉,

where|ϕiα〉 is a unit vector with itsiαth element equal to one
and zero otherwise. In the FOE method, the band structure
energy is expressed as

Ebs = 2
∑
iα

〈ϕiα|HF |ϕiα〉 = 2
∑
iα

〈Hϕiα|fiα〉, (15)

which can be decomposed into the contributions due to the
each ith atom. Once the vector|tliα〉 is obtained,|fiα〉 is
obtained as

|fiα〉 = F |ϕiα〉 ' pµ,T (H)|ϕiα〉

=
c0
2
|t0iα〉+

Npl∑
l=1

cl|tliα〉. (16)

The bond force acting on thejth atom is also expressed in
terms of the localized orbital|ϕiα〉 as

F j = −∂Ebs

∂Rj

= −2
∑
iα

∂

∂Rj
〈ϕiα|HF |ϕiα〉

= −2
∑
iα

〈ϕiα|[pµ,T (H) +Hp′µ,T (H)]
∂H

∂Rj
|ϕiα〉.

(17)

III. R ESULTS AND DISCUSSIONS

Figure 2 shows the total energyEtot (i.e., the sum of the
bonding and the repulsion energy) of the suspended finite size
AGNRs with various widthsN (=7, 9, 11) and the fixed length
M = 22 as a function the twisting angle, where the width
N is the number of carbon atoms along the width direction,
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Fig. 2. Twisting angle dependence of the total energy in AGNRs with various
widthsN .

Fig. 3. Abrupt geometrical transition from the ribbon like geometry at 720◦ to
the tube like geometry at 740◦ for N=11. Here we illustrated the geometrical
structure only around the middle section of AGNRs.

while the lengthM is the number of unit cells along the
transport direction. As seen in this figure, the calculated total
energy increases first as increasing the twisting angle, but then
it shows a small abrupt drop-off at a specific twisting angle
that depends on the ribbonN (e.g., at aroundθ = 720◦ for
N = 11). Such abrupt drop-off of the total energy actually
corresponds to the abrupt change in the geometry of the
twisted AGNR. That is, an AGNR can be twisted keeping its
ribbon like quasi-flat geometry only until a critical twisting
angle (Fig. 3, left), over which the ribbon is suddenly rolled
up to form tube like geometry (Fig. 3, right), resulting into
the sudden decrease of the total energy. Further twisting of
the AGNR causes more clear drop-off of the total energy at
aroundθ = 1170◦ for N = 11, which obviously corresponds
to the collapse of the structure. Similar abrupt geometrical
transition is seen also for7 × 22 (N = 7, M = 22) AGNR
as seen in Fig. 4. Then the next question is how such abrupt
change in the geometry of AGNRs influences their electronic

Fig. 4. Relaxed geometrical structures of twisted7×22 AGNRs with various
twisting angles. Here we illustrated the geometrical structure only around the
middle section of AGNRs.

Fig. 5. Band structure of twisted 9×22 AGNR with the twisting parameter
τW=1.55. Herea is the length of the unit cell.

Fig. 6. Band structure of twisted 9×22 AGNR with the twisting parameter
τW=1.62. Herea is the length of the unit cell.

properties.
In order to understand the influence of the abrupt geometri-

cal change seen in Fig. 3, we next consider the band structure
estimated from the quasi periodic geometrical structure near
the middle region of twisted AGNR. Here we assumed that the
twisting induced curvature is enough small so that the Bloch’s
theorem is approximately valid even in the presence of the
twisting, and thus the wavefunctions in two equivalent atoms
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Fig. 7. Calculated band gap observed in the central region of the twisted
AGNR as a function of the twisting parameterτW (see the text).

Fig. 8. Calculated band gap observed in the central region of the stretched
AGNR as a function of the same parameterτW .

in adjacent unit cells are related by the atom independent
phase factor. In Figs. 5 and 6 we plotted the band structures of
twisted 9×22 AGNR with the twisting factorτW=1.55 and
1.65, respectively, whereτ = θ/L with L being the length of
the ribbon, andW the width of the ribbon. For comparison,
we also plotted in the each figure the band structures of
stretched AGNR, where the stretching ratio SR (defined as
SR= (L′ − L)/L with L′ being the length of AGNR in the
stretched case) is adjusted so as to give the same strain energy
as for the twisting case for a given value ofτW , and is given
in terms of the twisting factorτW as [12]

SR =
(τW )

2

24
. (18)

We note that these two values ofτW used in Figs. 5 and 6
correspond to the twisting angle just before and the after the
abrupt geometrical transition seen in Fig. 3. WhenτW = 1.55
(before the abrupt geometrical transition), we see in Fig. 5
that the band structure of twisted AGNR is similar to that
of stretched AGNR. WhenτW=1.65 (after the geometrical
transition), on the other hand, we see that the band structures
of twisted and stretched AGNR are significantly different with
each other, meaning that the geometrical transition seen in the
twisted AGNR influences the electronic property as well.

Finally in Figs. 7 and 8 we show the band gap observed in
the twisted AGNR as a function of the twisting factorτW .
By comparing the stretched and twisted cases in Figs. 7 and

8, we can observe that twisted and stretched GNRs show
qualitatively the same band gap modulation up to a critical
value ofτW , over which they started to show rather different
behaviors. Obviously, such critical value ofτW corresponds to
the geometrical transition from the ribbon like geometry to the
tube like geometry in the twisted case. Therefore, it is found
that the twisting induced abrupt change in the geometry of
AGNR can actually cause the abrupt change in the electronic
property as well.

IV. CONCLUSION

We have studied numerically the effect of mechanical twist-
ing on the geometrical and electronic properties of graphene
nanoribbon (GNR) devices. By employing the tight-binding
molecular dynamics method for structural relaxation calcula-
tions in the presence of twisting, we found that the geometry
of the twisted GNR changes abruptly when the twisting angle
exceeds a threshold angle. Moreover it has been found that
such twisting induced abrupt change in the geometry of AGNR
can actually causes the abrupt change in the electronic property
as well.
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