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Abstract—The quantum mechanical Boltzmann equation is
applied to study the intraband and interband conductivity of
monolayer and bilayer graphene. The quantal features for both
material systems in response to the field are investigated. The
universal feature of conductance of bilayer graphene is verified
by the straightforward calculation from the band structure.
The intraband conductivity is found important at the THz
frequencies.

I. INTRODUCTION

Recent experiments on the transmission spectroscopy within
the THz regime have encouraged us to study the THz-
frequency conductivity of graphene [1]. At the infrared range,
the experimental data is consistent with the universal eπ/2h
value of conductivity ([1], see also, [2] and [3]). At the lower
THz range, there is significant conductivity greater than eπ/2h
observed, which could be contributed to the intraband (Drude
spectral model). Further, the response of electron transport to
the THz-frequency electromagnetic excitations with the time
and space variation exp (iωt− iq · r) is a problem of potential
importance to high speed graphene-based applications, such as
RF planar circuits, surface plasmon sensor. Additionally the
problem is necessary to study for the development of long
wavelength plasmon lasers based upon graphene (e. g. [4] ).

II. THE MODELS

The approximation q=0 is often used as a simplifying
approximation in calculation of conductivity σ(ω, q) [5].
However, the quantum mechanical (QM) Boltzmann equation
deviates substantially at large q (by a factor h̄2q2/2m/εF ,
where εF is the Fermi energy) from its classical limit [6]. This
work applies a fully quantum mechanical Boltzman formalism
[6], [7] to explore the high frequency conductivity σ(ω, q) of
monolayer and bilayer graphene.

This analysis accounts for the density matrix element ρq
k =

fω,q(h̄k) that arise between Bloch states, namely with Bloch
wavevectors (k + 1

2 q), (k − 1
2 q) differing by q under the

excitation of exp (±iq · r). At q = 0, it is simply the Fermi-
Dirac function ρ

(0)
k = f(ε(k)), where ε(k) is the electron

energy.
The quantum mechanical (QM) Boltzmann equation is

[iω+χ+iωq
k+iγq

k(ω)]ρq
k−

i

h̄
Cq

k =
∑

k′

∆q
kk′S

q
kk′(ρ

q
k′−ρq

k) (1)

where h̄ωq
k = ε(k + 1

2 q)− ε(k− 1
2 q) is the energy difference

between the two Bloch states, and the coefficient is

Cq
k =

〈
k +

1

2
q|H ′|k− 1

2
q
〉

[f(h̄(k +
1

2
q))− f(h̄(k− 1

2
q))]

(2)
where the first term is the Hamiltonian of optical excitation
between initial and final states. Another important term is
γq

k(ω) is the impurity’s scattering, which is often proportional
to the amplitude of q. On the right are the collisions terms.
By imitating the Vlasov equation for plasma, the collisionless
QM Boltzmann equation becomes

[iω + χ+ iωq
k + iγq

k(ω)]ρq
k − i/h̄C

q
k = 0 (3)

A. Monolayer graphene

The Hamiltonian of the monolayer graphene is

H =

(
0 h̄vF (kx − iky)

h̄vF (kx + iky) 0

)
(4)

where vF is the Fermi velocity. kx, ky are the x,y projections
of k. The wavefunctions are

|K,Ψc,v〉 =
1√
2

exp (ik · r)

(
exp (−iθ(k)/2)
± exp (iθ(k)/2)

)
(5)

where θ(k) is the angle constructed by the kx, ky . The + is
for the conduction band, and − is for the valence band.

The optical excitation is H ′ = evFσ · A, where A is
the vector potential and σ is the Pauli matrix. The velocity
of electron is vk =

〈
k± 1

2 q| ∂Hh̄∂kx |k±
1
2 q
〉

. The energy
dispersions are ε(k) = ±h̄vF |k|.

The current is related to the density of matrix

Jq = e

∫
dkρq

kvk (6)

If we use the wavefunctions above, evaluate the optical pertur-
bation matrix element of Cq

k and perform the integration over
the momentum space, we obtain the intraband conductivity

σintra = −ie
2v2
F h̄

π2

∫ ∞
0

kdk

∫ 2π

0

dθ cos2 Θ{
1

(h̄ω + εc− − εc+ + iΓ(q))

fc− − fc+
εc− − εc+

− 1

(−h̄ω + εc+ − εc− + iΓ(q))

fc+ − fc−
εc+ − εc−

}
(7)
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Here ε± = ε(k± 1
2 q) and fc± = fc(ε(k± 1

2 q)). γ±qk (∓ω) has
been replaced with its imaginary component Γ(q), which is
the inverse of the relaxation time of the states under frequent
impurity’s scattering events [6]. The interband conductivity is

σinter = i
e2v2

F h̄

π2

∫ ∞
0

kdk

∫ 2π

0

dθ sin2 Θ{
1

(h̄ω + εc− − εv+ − iχ)

(fc− − fv+)

(εc− − εv+)

+
1

(h̄ω + εv− − εc+ − iχ)

(fv− − fc+)

(εv− − εc+)

− 1

(−h̄ω + εc+ − εv− − iχ)

(fc+ − fv−)

(εc+ − εv−)

− 1

(−h̄ω + εv+ − εc− − iχ)

(fv+ − fc−)

(εv+ − εc−)

}
(8)

Here εc,v± = εc,v(k± 1
2 q) and fc,v± = fc,v(ε(k± 1

2 q)). The
variable Θ in both cases is Θ = 1

2 [θ(k+ q
2 )+θ(k− q

2 )]. χ > 0
is real and eventually χ→ 0.

B. Bilayer graphene

The Hamiltonian for the bilayer graphene in a manner of
approximation is [8],

H = − h̄2

2m

(
0 (kx − iky)2

(kx + iky)2 0

)
(9)

where m = 0.054 is the effective mass. Here we take the
lowest order and assume there is no gap open [8]. The basis
functions of H0 can be found for the conduction band,

|K,Ψc,v〉 =
1√
2

exp (ik · r)

(
±e−2iθ(k)

1

)
(10)

where + sign is for the conduction band and - sign is for the
valence band. The energy dispersions are ε(k) = ±h̄2k2/2m.
The intraband conductivity is

σintra = i
h̄3e2

4m2π2

∫ ∞
0

k3dk

∫ 2π

0

cos θ(k)dθ[
Θ(k− q

2 ,k + q
2 )

(h̄ω + εc− − εc+ + iΓ(q))

fc− − fc+
εc− − εc+

+

Θ(k + q
2 ,k−

q
2 )

(h̄ω − εc+ + εc− − iΓ(q))

fc+ − fc−
εc+ − εc−

]
(11)

where the function Θ is defined as

Θ(−q/2,+q/2)

=
(
e2iθ(k+ q

2 )−2iθ(k) + e2iθ(k)−2iθ(k− q
2 )
)

(
e2iθ(k−q/2)−iθ(k) + eiθ(k)−2iθ(k+q/2)

)
(12)

, and εc± and fc± are denoted the same as above. The
interband conductivity is found

σinter = −i e
2h̄3

4m2π2

∫ ∞
0

k3dk

∫ 2π

0

cos θ(k)dθ{
Λ(q/2,−q/2)

(h̄ω + εc− − εv+ − iχ)
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+
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(h̄ω + εv− − εc+ − iχ)
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(εv− − εc+)
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}
(13)

where the function of Λ is defined as

Λ(q/2,−q/2)

=
(
−e2iθ(k+ q

2 )−iθ(k) + eiθ(k)−2iθ(k− q
2 )
)

(
e2iθ(k− q

2 )−2iθ(k) − e2iθ(k)−2iθ(k+ q
2 )
)

(14)

and the Λ(−q/2, q/2) term is to switch the sign of q above.
When q = 0, the conductivity equations are the same as

obtained from other methods (e. g. [5]).

III. RESULTS

We discuss the intraband and interband conductivity sepa-
rately.

A. Intraband

The analysis equations (7) and (11) reveal that the Drude
peak if the photon energy h̄ω is equal to Γ(q). Therefore, the
intraband frequency-dependent conductivity σintra becomes
important at low optical frequencies. Also, the Γ(q) is pro-
portional to the spatial wavevector q [6], implying the space
variations of electromagnetic fields need be considered at low
optical frequencies.

The effect of space variations is further examined by assum-
ing the Γ(q) is a constant without any dependence of q. The
intraband frequency-dependent component of the conduction-
band conductivity for bilayer graphene is plotted in Fig. 1,
where the value of Γ was taken as Γ = 0.005eV (this value
may be larger, see Ref. [3]) and an upper Fermi energy
of kF = 51, 0001/cm was assumed. Here, the maximum
conductivity corresponds close to the photonic energy value
used for Γ , i.e., f = Γ/2πh̄=1.2 THz. Hence, the conduc-
tivity in the THz regime is strongly influenced by impurity
scattering and potentially may be applied to characterize the
level of doping and/or defects in bilayer graphene. Also, if
q (or h̄2q2/2m) becomes comparable with kF (or EF ), the
intraband conductivity varies appreciably which is an indicator
of charge accumulation or depletion effects. This behaviour is
consistent with the prediction given in [6]. Therefore at large
q, the QM Boltzmann equation is more appropriate than the
semi-classical one.
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Fig. 1. The imaginary part of the intraband conductivity in the conduction
band of bilayer graphene. kF = 51, 000/cm, and Γ ≈0.005eV. The
temperature is 300K.

Fig. 2. The imaginary part of the intraband conductivity in the conduction
band of monomlayer graphene. kF = 1, 100/cm, and Γ ≈0.005eV. The
temperature is 300K.

The calculations for monlayer (see Fig. 2) indicate there is
no deviation in σintra even at large q ∼ kF as was observed
for the bilayer case. In this case, the semi-classical Boltzmann
equation is still good.

B. Interband

The temperature dependence of the dynamical conductivity
for the monolayer graphene is plotted in Fig. 3. The conduc-
tivity switches to e2/4h̄ when the photon energy h̄ω is around
the twice of the Fermi energy εF . The intraband conductivity
for the bilayer graphene is plotted in Fig. 4. At the high optical
frequencies, the sheet conductivity is very close to e2/4h̄,
almost the same as in the case of monolayer graphene. This
is consistent with what was observed in the experiments of
graphite [9].

When the value of q is compared to the Fermi surfaces
(in a hypothetical case of surface plamson), the conductivity
deviates from their semi-classical limit in both monolayer and

Fig. 3. The real part of the interband conductivity in the conduction band of
momolayer graphene at different temperatures. kF = 1.1 × 106/cm, εF =
79.6meV, and q=0.

Fig. 4. The real part of the interband conductivity in the conduction band
of bilayer graphene at different temperatures. kF = 3.1 × 106/cm, εF =
60.5meV, and q=0.

Fig. 5. The real part of the interband conductivity in the conduction band
of momolayer graphene on the space variation. kF = 1.1 × 106/cm, εF =
79.6meV. The temperature is 4K.
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Fig. 6. The real part of the interband conductivity in the conduction band of
bilayer graphene on the space variation. kF = 3.1×106/cm, εF = 60.5meV.
The temperature is 4K.

bilayer graphene. In the examples plotted Fig.5 and Fig. 6, the
Fermi energy levels are in the valence bands. Particularly, the
deviation mostly occurs near the twice of the Fermi energy.

Thus, in some cases of larger frequencies and space gra-
dients, the semi-classical Boltzmann equation need be trans-
formed into the quantum mechanical domain.
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