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Abstract— The plasma wave in the conduction channel of a 

semiconductor heterostructure high electron mobility 

transistor can be excited at frequencies significantly higher 

than the cut-off frequency in a short channel device. The 

hydrodynamic model predicts a resonance response to applied 

harmonic signal at the plasma oscillation frequency. When 

either the ac voltage induced in the channel by the signal at the 

gate or the current applied at the drain or source contact are 

not very small, the plasma waves in the semiconductor channel 

will propagate as a shock wave. The device can be used either 

as a detector or a tunable source of terahertz range radiation. 

We show that in both configurations the charge flow develops 

shock waves due to hydrodynamic nonlinearities. In the 

graphene based channel there is an additional mechanism of 

the shock wave formation, related to nearly linear dispersion of 

the conduction band. 
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I.  INTRODUCTION. 

The plasma wave in the conduction channel of a 
semiconductor heterostructure high electron mobility 
transistor (HEMT) is an electron density excitation, possible 
at frequencies significantly higher than the cut-off frequency 
in a short channel device. The hydrodynamic model predicts 
a resonance response to electromagnetic radiation at the 
plasma oscillation frequency, which can be used for 
detection, mixing, and frequency multiplication in the 
terahertz range. [1] In particular, the hydrodynamic 
nonlinearities produce a constant source-to-drain voltage 
when gate-to-channel voltage has a time-harmonic 
component. In the Dyakonov-Shur detector a short channel 
HEMT is used for the resonant tunable detection of terahertz 
radiation. The non-linear plasma response has been observed 
in InGaAs [2] and GaN [3] HEMTs, in the frequency range 
from 0.2 to 2.5 THz. Recently, a broad band plasma 
mediated response to 0.3 THz electromagnetic signal was 
shown in a graphene field effect transistor at room 
temperature. [4] 

The plasma waves in the gated two-dimensional channels 
have linear dispersion law ω(q) = sq where s is the plasma 

wave velocity, q is the in-plane wave vector.  For example, if 
gate voltage U0 is 1 V above the threshold voltage for the 
formation of the conduction channel, Uth, the plasma wave 
velocity in GaAs and GaN channels is s ~ 10

8
cm/s, usually 

much higher than the electron drift velocity. [1] In a 
graphene channel the wave velocity s exceeds the Fermi 
velocity, vF = 10

8
 cm/s, by a factor of 5 to 9. [5] In a channel 

with length L with asymmetric boundary conditions the 
eigen-frequencies of the plasma standing waves are odd 
multiples of the fundamental plasma frequency, given by ω0 
= πs/2L. When the mean free path of electron-electron 
collisions is much smaller than the channel length L, the 
plasma transport in the channel can be studied within the 
hydrodynamic model of the electron density waves.

 
[6] If the 

momentum relaxation time τ due to electron-phonon and 
electron-impurity collisions is such that ω0τ >> 1, the HEMT 
can operate as a resonant detector tunable by the gate 
voltage. If the ac voltage induced in the channel by the signal 
at the gate is not very small compared to the dc gate voltage, 
we show that the plasma waves in the channel will propagate 
as a shock wave. With no applied ac voltage at the gate but 
with large enough dc current at the drain contact and 
constant voltage at the source, the charge flow becomes 
unstable because of plasma wave amplification at the 
boundaries. [6] The device then can be used as a tunable 
source of terahertz range radiation. We show that in such 
configuration the charge flow also develops shock waves due 
to hydrodynamic nonlinearities. In the graphene channel if 
the drift velocity is not very small compared to the Fermi 
velocity, there is an additional mechanism of the shock wave 
formation, related to the strongly non-parabolic dispersion of 
the conduction band.  

II. HYDRODYNAMIC MODEL FOR SEMICONDUCTOR 

CHANNELS.  

 
The hydrodynamic model here was derived as the 

balance equations from the quasi-classical Boltzmann 
equation, starting with a drifted Fermi-Dirac distribution as a 
zero order term in the expansion of the distribution function 
in orders of the Knudsen number, the ratio of the mean free 
path of electron-electron collisions to the characteristic 
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length of electron density variations. Using the electron–
electron scattering rate 1/τee in the relaxation time 
approximation for the first order correction to collision 
integrals, we obtain the pressure tensor and the heat flux 
vector, and the temperature dependence of the hydrodynamic 
transport coefficients, i.e. viscosity ν and the heat 
conductivity κ.

 
[7]  In the long wave length limit, kd <<1 

where d is the distance from the channel to the gate contact, 
we obtain the linear dispersion ωpl(k) = sk with s = 
(eU0/m)

1/2
, where U0 = Ug–Uth and m is the effective electron 

mass..  

We obtain the equations of the viscous hydrodynamic 
model for the electron fluid in the gated semiconductor 
channel as the two-dimensional density balance equation, the 
Navier-Stokes equation, and the heat equation. The first two 
equations are: 
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where n(r,t) and u(r,t) are the density and drift velocity 
respectively. P(r,t) is the scalar pressure and U(r,t) is the 
electrical potential in the channel determined here in the 
gradual channel approximation [6,7].  For a GaN channel 
with gate to channel distance d = 35 nm, electron effective 
mass m/m0 = 0.2 and εs =8.9 we obtain the gate to channel 
capacitance per unit area C = 2.25×10

-3
 F/m

2
, and n = UC/e. 

To the order in which the hydrodynamic model is derived 
from the Boltzmann quasiclassical equation, the pressure and 

internal energy per electron ε at temperature T are  given by  
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where ξ is chemical potential in units of kBT: ξ = 
ln[exp(EF/kBT) –1] and Fermi energy EF = πħ

2
n/m.  Fn(ξ) are 

the Fermi integrals, defined as  
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The heat equation and the effects of the temperature 
gradient on plasma waves were discussed elsewhere [7,8] 
and will not be considered in this work. The temperature 
dependence of the viscosity for a semiconductor channel was 
also derived in references 7 and 8. The relaxation time τ in 
the friction term in Eq. (22) can be related to the electron 
mobility η in the channel, η = eτ/m, and its temperature 
dependence can be found from electron-phonon scattering 
rates [9]. 

 The system of the hydrodynamic equations is solved 
numerically.  In the one-dimensional transport [1,6] the 
boundary conditions where U(x=0,t) = U0 + Uacos(ωt) at the 
source side of the channel and fixed current density j0 = 
en(x=L,t)ux(x=L,t) at the drain side. Because of viscosity  
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Figure 1.  Formation and propagation of shock waves in a semiconductor 

channel. Top panel: electron density variation as function of position at 

three different values of  dimensionless time ts/L, 162.4 (thin solid line), 
177 (broken line), and 179.6 (thick solid line), for GaN channel at 60 K. 

Bottom panel: propagation of a shock wave from drain to source is seen in 

the density profiles shown at dimensionless times ts/L separated by 0.4, 

starting at ts/L = 244 for the rightmost curve 

terms we need an additional boundary condition for spatial 
derivatives of velocity and we set these derivatives to zero at 
the boundaries.  

In Fig. 1, we model a GaN channel of length L=0.5μm 
used as a terahertz source (no external ac signal, Ua = 0, and 
the dimensionless value of the applied dc current j0 at the 
drain given by j0/esn0 = 0.12), where n is the surface density 
of the electrons with n0 denoting its dc value.  We find that 
initially the channel acts as a quarter wave plasma resonator 
with a harmonic plasma wave.  As the plasma wave grows 
shock waves develop.  The final steady state plasma wave in 
the channel has a very significant shock wave component.   
We note that this shock wave may cause the terahertz source 
to emit higher order harmonics as well as the desired 
fundamental frequency.  

We can obtain an analytical expression for the instability 
threshold using the perturbation treatment of the plasma 
response to the small applied ac source-to-gate voltage 
Uacos(ωt) [1, 10]. The induced dc component of the source-
to-drain voltage has a resonant dependence on the signal 
frequency ω. In the case of a non-zero drain current  the 
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width  of the resonant response is reduced to Δω = 1/τ 
+π

2
ν/4L

2
 – 2u0/L where u0 = u(x=L). Thus in perturbation 

treatment the width vanishes at u0 =L/2τ +π
2
ν/4L. This also 

gives the threshold condition for plasma wave generation by 
drain current [10]. For GaN channel of length L=0.5μm at 60 
K this gives j0/sn0 > 0.069 as condition of instability, close to 
the value obtained from a numerical solution [9]. 

 

III. HYDRODYNAMIC MODEL FOR GRAPHENE CHANNELS.  

 

The carrier densities and hence the plasma resonance 
frequencies in a graphene conduction channel can be tuned 
by the gate voltage, e.g.  in the back-gated device 
configuration proposed in reference 5. The plasma wave 
velocity in graphene was shown there to always exceed the 
electron velocity, i.e. the Fermi velocity, and as a result the 
intraband Landau damping of the plasma waves in gated 
graphene conduction channel is reduced.  The quality factor 
of the plasma resonator will be mobility limited and in 
graphene it will only weakly depend on temperature. For 
conduction channel with length L = 1 μm, the gate to channel 
distance 0.3μm and U = 1 to 10 V, the frequency f0 = ω0/2π 
is in the range from 1 to 5 THz. The wave velocity s exceeds 
the Fermi velocity, vF = 10

8
 cm/s, by a factor of 5 to 9.  

When a positive potential is applied to the gate at 
temperatures significantly below the Fermi temperature the 
density of holes is much smaller than the density of 
electrons. [7] As an example consider graphene on a silicon 
oxide substrate, with d = 0.3 μm, U = 1 V. With εs= 6, we 
obtain gate to channel capacitance per unit area C = 1.77×10

–

4
 F/m

2
, and electron density ne = 1.1×10

11
 1/cm

2
. With the 

Fermi velocity vF = 10
8
 cm/s, we obtain kF = 0.59×10

6
 1/cm 

and EF = 39 meV. If the gate voltage increases to 10 V the 
Fermi energy increases to 123 meV. The plasma wave speed 
as a function of the gate voltage U in the gradual channel 
approximation is given by 
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where gs =2 and gv=2 are spin and valley degeneracy factors. 
In the presence of both electrons and holes with ne > nh the 
Fermi energy is given by EF = ħvFkF = ħvF[4π(ne-nh)/gsgv]

1/2
. 

The hydrodynamic variables are electron and hole 
densities nα(r,t), drift velocity v(r,t), and drift momentum 
p(r,t). They are obtained by an ensemble averaging from the 
corresponding microscopic variables.  As in the 
semiconductor channels the hydrodynamic equations for 
graphene are obtained from the Boltzmann transport 
equation by expansion of the non-equilibrium distribution 
functions in orders of the Knudsen number, λcc/L. The flow 
is described by the Navier-Stokes equation, a non-linear 
relation between hydrodynamic momentum and velocity, and 
the diffusion between electrons and holes. We also define the 
total carrier density n = ne + nh. In this work we ignore the 
temperature gradients and use the energy balance equation to 

the zero order, and obtain the following hydrodynamic 
equations describing 2D flow of electrons and holes [7]: 
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where the relaxation time τ is due to the carrier- phonon and 
carrier- impurity scatterings and is related to the mobility μ = 
eτvF

2
/EF.  The hydrodynamic momentum and velocity are 

related through the following relation: 
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Figure 2.  Formation and propagation of shock waves in a graphene 

channel. Top panel: electron density variation as function of position at 
three different values of  dimensionless time ts/L, 454.5(thin solid line), 

504.5 (broken line), and 515.5 (thick solid line). Bottom panel: 

propagation of a shock wave from drain to source is seen in the density 
profiles shown at dimensionless times ts/L separated by 0.15, starting at 

ts/L = 624.5. The shock propagation speed is indicated by vs. 
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The pressure P is given by  
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The temperature dependences of the viscosity coefficient 

and the diffusion currents je and jh were discussed in 
reference 7. Here ξ is the chemical potential in units of kBT. 
It is found  by solving the following equation  
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The development of shock waves in the charge flow in a 
graphene channel with L= 0.25μm and U = 10 V is shown in 
Fig. 2.  In the case shown in this figure there was no external 
ac signal and the dimensionless value of the applied dc 
current j0 at the drain is given by j0/sn0 = 0.06.  With the gate 
voltage of 10 V above the threshold the Fermi energy is 123 
meV, much larger than the room temperature. Then the hole 
density is much smaller than the electron density and the 
diffusion currents can be ignored in the numerical solution. 

The nonlinear relation between hydrodynamic 
momentum and velocity is responsible for the onset of shock 
waves in graphene channel at the lower values of drift 
velocities than in semiconductor channels.  

 

IV. OBLIQUE WAVE PROPAGATION ON THE TWO-

DIMENSIONAL SEMICONDUCTOR CHANNELS. 

 
We also studied the case of oblique wave propagation in 

a two dimensional channel.  We define the longitudinal 
direction x along the channel from source to drain and the 
transverse direction y. The channel has width W and length 
L. The wave vector of a linearized plasma wave exp(-iωt + 
ikx + iqy) has a longitudinal and transverse components k 
and q, respectively.  In order to introduce oblique waves, the 
source boundary condition is U(0,y,t) = U0 + Uacos(ωt–qy). 
Oblique propagation will occur for q ≠ 0. The drain 
boundary condition is en(L,y,t)ux(L,y,t) = j0 and the 
conditions of zero transverse velocity can be used, uy(y=0) = 
uy(y=W) = 0. For the additional boundary condition for 
spatial derivatives of velocity we choose to be ∂ux/∂x(0,y,t) = 
∂ux/∂x(L,y,t) = 0. For the initial conditions we chose the 
density and velocity profiles obtained analytically from the 
perturbation approximation in the small signal analysis [1]. 
The oblique waves were shown to result in a widening of 
detection resonant characteristics and lowering the quality 
factor [2].  

In addition to the instability discussed in section II an 
additional instability at nonzero values of transverse wave-
vector q was predicted in reference 11, using a linear 
approximation for a flow in an infinitely wide channel. The 
corresponding threshold condition was given by qu0

 
> 1/τ 

[11].  However, our numerical investigation showed that for 
all values of the transverse wave-vector q for the large 
enough longitudinal boundary velocity the transport was 
dominated by the one-dimensional instability, leading to the 
propagation of shock waves in the longitudinal direction. In 
our numerical implementation we added randomly generated 
components to the initial density and velocity fields so that 
the initial values are n(r,t=0) + Δn(r) and u(r,t) + Δu(r), 
with Δn and Δu given by the pseudorandom (white noise) 
generator. They have Fourier components with arbitrary 
large values of q. For any value of the longitudinal boundary 
velocity u0 and zero transverse boundary velocity the 
transverse velocity anywhere in the channel eventually 
decays, max{|uy(r,t)|} →0 at large t. We conclude that the 
only current driven instability is of the type predicted in 
reference 6, which was shown here to lead to the formation 
of shock waves in the longitudinal direction in the channel. 
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