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Abstract—We present an efficient time-dependent NEGF method
for simulation of dynamic through steady-state intra- and inter-
band quasi-ballistic quantum transport in graphene using an
atomistic-tight-binding Hamiltonian, novel alternating direction
semi-implicit numerical time evolution schemes, and injecting
and absorbing boundary conditions.
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L INTRODUCTION

Graphene is being considered for many purposes because
of its novel properties. Although the lack of a band gap
continues to challenge CMOS-like logic applications, high
carrier velocities, the ultimate ultrathin body and potential
process compatibility with silicon technologies still make
graphene a promising candidate for radio frequency (RF)
applications [1,2] and perhaps for novel “beyond CMOS”
applications [3]. For such devices, however, one must go
beyond quasi-static to truly time-dependent analysis to fully
understand their intrinsic frequency limitations and dynamic
response. Towards this goal, we are developing a time-
dependent non-equilibrium Green's function (NEGF) for
modeling dynamic quantum transport in graphene. Here we
describe the essential elements of the method—Hamiltonian,
time evolution scheme and open boundary conditions—and
illustrate them via simple MATLAB-based [4] simulations for
clarity. With these elements given, future, e.g.,
electrostatically ~ self-consistent simulation of graphene
MOSFETs with a thermal distribution of source-injected
carriers will add only to the computational burden, not the
technical one.

The challenges of simulating time-dependent transport in
graphene include fast (I nm/fs), quasi-non-dispersive, and
multi-band  transport—the latter because band-to-band
tunneling is a critical physical consideration for essentially all
proposed graphene devices. To address these challenges,
a m-orbital-based nearest-neighbor atomistic-tight-binding
Hamiltonian model of graphene is used. Novel variations of
an alternating-direction semi-implicit scheme are employed to
solve the time-dependent Schrodinger equation on the
hexagonal lattice, to maintain stability, conserve probability,
and achieve computational efficiency. Potentially time
dependent source terms and stationary but non-local self-
energy terms are added to allow transport through the
simulation region.

I.  SOLUTIONS OF TIME-DEPENDENT SCHRODINGER EQ.
Within the tight-binding formalism, the time-dependent
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Figure 1. Illustration of the graphene crystal lattice, represented by the
points where the colors distinguish the sublattice, and the nearest tight-
binding coupling of the tight-binding Hamiltonian, represented by the
lines (solid or dashed, black or gray). For one implementation of an
alternating direction implicit scheme, ADI1 (see Section III), the
associated four-atom unit cell is shown in the rectangle. In this case,
coupling between atoms within the same unit cell are indicated by the
black solid lines, coupling between unit cells in the x direction by
black dashed lines and coupling between unit cells in y direction by
dashed gray lines.

Schrodinger equation is of the form,

d
ih <y =Hy> (1
[ dt\v 4

where y and H are the wave-function column matrix and

Hamiltonian square matrix, respectively. Here we consider
on-site and nearest-neighbor z-bonding only on the two-
dimensional (2D) hexagonal lattice of graphene (Fig. 1), with
nearest-nearest neighbor matrix elements H;; = 7, = —3.03 eV,
on-site matrix elements H;—defined by an electrostatic
potential, e.g.—and all other matrix elements set to zero.

To numerically solve (1), we first consider discretization of
time via the well-proven semi-implicit Crank-Nicolson (CN)
method [5]. This approach provides accurate, unitary and time
reversible evolution and serves as a reference here. Assuming
a time step of At for time integration, the CN is

j - @

y(t+At)—y(1) =H(r+%)(

At
Denoting y" =wy(nAt) and H"'"? =H(nAt+At/2), Eq. (2)

can be rewritten for each time step as,

y(t+Ar)+y(r)
2

in

(I+l~AtHn+l/2)‘Vn+l :(I_l-AZHnH/Z)‘Vn . (3)

As an illustration of time evolution, we consider a
Gaussian wave-packet centered around one of the Dirac points
kp in wave-vector space and initially well-localized in real-
space, as per Fig. 2(a),
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Figure 2. Snapshots of time evolution of initially Gaussian wave-packet
at (a) t=0 and (b) r=14 fs.
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The two-element column matrix is the so-called “pseudo-spin”
matrix describing the relation between the complex amplitude
coefficients of the two sub-lattices of graphene. While fixed
initially here, in general it can be a function of r as well. This
wave-packet contains equal contributions from the conduction
and valence band, and extends well into both. Due to the
predominately linear dispersion/constant carrier speed in
graphene within the relevant energy range, the wave-packet
spreads from the center in a asymmetric ring-like shape with
little change in the ring thickness with time, as shown in Fig.
2(b) at t = 14 fs. The principle direction of motion is associated
with the given initial pseudo-spin phase. This behavior,
confirmed by analytic results for this simple system [6],
contrasts markedly to the broadening-Gaussian-evolution
characteristic of particles in a single band of well-defined mass.

Accurate simulation, however, requires a quite small time
step. For an explicit time-evolution scheme, the fixed carrier
speed of 1 nm/fs and nearest-neighbor inter-atomic spacing on
the order of 0.1 nm would suggest the use of a time step less
than or equal to about 0.1 fs simply to track a wave front. In
practice, we have also found this estimate to be appropriate for
our half-implicit scheme(s). As shown in Fig. 3, the use of a
1.0 fs time step results in slowed and qualitatively inaccurate
motion of the wave-packet by comparison to the result for a
0.1 fs time step. Note that in the latter case (Fig. 3(a)) the
leading edge of the wave-packet travels about 3 nm in 3 fs as
expected.

With the basic CN method, the computational cost per time
step increases super-linearly with size of the considered
simulation region due to the far-from-diagonal nonzero
elements of the Hamiltonian required in (3). To reduce the
computational effort, we introduce two split operator
alternating-direction implicit (ADI) methods.
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Figure 3. Snapshot of a time evolved initially Gaussian wave-packet on
Graphene at 3 fs for a time step of (a) 0.1 fs and (b) 1 fs.
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In the first approach, ADII, we split the Hamiltonian
operator H into quasi-rectangular coordinates with H, and H,,
and the time step in half such that (2) becomes,

AL e A ;
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Hopping in the nominal y direction is fully explicit and
hopping in nominal x direction is fully implicit during the first
half of the time-step, and vice-versa during the second half.
However, there is more than one way to perform such a quasi-
rectangular splitting of the Hamiltonian. We obtain H, and H,
by considering the rectangular unit cell shown in Fig. 1.
Coupling between atoms within the unit cell (solid black lines)
is considered in both H, and H, but at half-strength ',
Coupling between unit cells in the x direction (dashed black
lines) is considered only in H, but at full strength #,. And
coupling between unit cells in the y direction (dashed gray
lines) is considered only in H, but again at full strength .
Any on-site contributions to H are split evenly between H,
and H,. This operator splitting leads to pentadiagonal and
tridiagonal matrix equations in the first and second halves of
the time step, respectively.

Another approach we use to split the Hamiltonian, ADI2,
follows the natural rotational symmetry of the graphene
lattice. We subdivide the Hamiltonian as H = H, + H, + H;.
Each of the three components Hamiltonians H; are constructed
by ignoring all bonds in the corresponding direction &; shown
in Figl, as illustrated in Fig. 4. Since each bond appears in two
of the H;, their strength is halved therein, to %f, again. The
onsite coupling is split equally among the three H;. The time
step is now split into three sub-steps as,
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(6)

The parameter 7 is set to 3/2 so that the method remains norm-
conserving half-implicit. (L.e., such that #(H; + H, + Hj)
from the left-hand/implicit side(s) of (6) equals
3H — n(H, + H, + H3) from the right-hand/explicit sides(s).)
Figs. 5(a)-(c) illustrate the accuracy of these ADI methods,
showing essentially identical snapshots obtained at 3 fs from
an initially Gaussian wave-packet using the reference non-
ADI, ADII, and ADI2 methods, respectively. Fig. 5(d) shows
the computational effort for the three different methods as a
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Figure 4. Illustration of the H = H; + H, + Hj split Hamiltonian of
the ADI2 method.
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Figure 5. Snapshot of an initially Gaussian wave-packet with a

pseudospin angle of 60° at 3fs, obtained using (a) non-ADI (b) ADII (c)
ADI2 methods, and (d) computational time per time step for the nonADI
(black), ADI1 (dashed red), and ADI2 (dash-dot blue) methods as a
function of simulation region size.

function of the number of atoms in the simulation region for
an ~20 nm wide graphene ribbon of varying lengths. Both
ADI methods exhibit only linear growth in simulation time
with simulation region size, in contrast to the super-linear
growth with the non-ADI method. (That the effort required
does not diverge earlier is a testament to the UMFPACK
matrix solver used in MATLAB). While the ADI1 method
requires slightly less effort per time step, a more detailed
analysis finds the ADI2 method to be slightly more accurate
for a given time step. The differences are small enough that
convenience may be the best determinant of which to use.

II.

For the sake of the current discussion, consider a central
(C) simulation region through which we wish to consider
dynamic probability/charge current flow, coupled to “open”
left (L) and right (R) “leads,” where the wave-function in each
region is Y¢, Yy, and yp, respectively.

Consider injection first, from the left lead for specificity.
The total wave-function in the left lead can then be written as
v, =y, +y, where y! is the assumed-given incident
wave-function whose time evolution in the lead is known, and
v is any reflected wave. The time-dependent Schrodinger’s

ABSORBING AND INJECTING BOUNDARY CONDITIONS

equation is transformed into the inhomogeneous/NEGF form,

d | H H, 0 ]wv
ihE Ve |=|Hog He He || we [+ys. (7
Y, 0 H, H, |w;

Here, He, H;, and Hy are the Hamiltonians of the isolated
central, left and right regions, respectively. The off-diagonal
elements represent the coupling between the adjacent regions.
The probability source term y, on right-hand-side is given by
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Consider next absorption by the leads. In principle, one
could derive boundary self-energies based on quantum
transmitting boundary conditions (QTBCs) as for time-
independent NEGF. However, non-stationary QTBCs are
required for the time-dependent system. In principle, creation
of these requires keeping track of, and integrating over at each
time step, the past history of the wave-function at the
boundary, or at least a significant period thereof for a
reasonable approximation. It may be possible to provide non-
stationary but at least local-in-time approximate QTBCs via
extrapolation of the time-dependent wave-function within the
central region to (just) across the boundary, based on
assumptions about its approximate form (such as in [7]
perhaps aided by a transverse mode expansion). However,
multi-band transport and quasi-non-dispersive transport, such
that abrupt variations in the wave-function induced far from
the lead boundary may remain at the boundary, make this
latter approach to QTBCs challenging.

For these reasons, for simplicity, and for flexibility, we
employ stationary but spatially non-local position-dependent
absorbing complex potentials—self-energies—within leads of
finite length, such as used in electromagnetics [8]. To be
effective, however, there are some basic requirements that the
combination of complex potential and lead length must meet.
To avoid reflection from the end of the finite leads, the
average complex potential within the lead must be sufficiently
large to completely absorb any injected—and very fast in
graphene—wave-function before it can reach the end of the
lead and reflect all the way back to the simulation region.
However, the rate of change of the complex potential with
position, particularly near the boundary between the central
region and the lead, cannot be so fast as to cause back
reflection in and of itself.

To first illustrate the absorption boundary conditions only,
the time evolution of an initially predominately right-directed
Gaussian wave-packet out of an approximately (~) 21 nm
wide by ~19 nm long section of graphene is simulated. We
consider three scenarios for the right lead, as illustrated in Fig
6(a): an ~85 nm long lead region with no complex absorbing
potential (NOCAP); the same lead region with an added
complex absorbing potential (CAP) linearly ramped from zero
at the boundary to the central region up to a purely imaginary
15 meV at its right-side hard-wall boundary; and an ~170 nm
long lead region with no complex absorbing potential
(NOCAP-L). (With the predominately right-directed wave, the
left lead is essentially of no consequence). Figures 6(b)-(d)
show the probability density within the simulation region as a
function of time for the non-ADI, ADI1 and ADI2, methods.
The reflection from the lead end back into the simulation
region in the NOCAP case is clear. In the NOCAP-L case, the
simulation region is effectively a perfect infinite lead within
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Figure 6. (a) Geometries used for CAP, NOCAP and (effectively infinite
lead) NOCAP-L simulations as described in text. Total probability
function density in the central region as a function of time for simulation
with (b) Non ADI, (c) ADI 1 and, (d) ADI 2 methods, for NOCAP (solid
black) and CAP (solid red) and NOCAP-L (solid blue) simulations.

the considered 250 fs simulation period as there is no time for
the wave-function of maximum velocity 1 nm/fs to traverse
back and forth across the lead region, which makes the
associated result the reference ideal result. The agreement
between the CAP and NOCAP results, therefore, demonstrates
the accuracy of the absorbing potential approach. However,
although accurate here, the combination of absorbing potential
and channel length has not yet been fully optimized to
minimize the latter and, thus, the computational burden.
Finally, we note that the required length of the leads is
independent of the size of the central region, so the relative
computational burden will decreases with larger central
regions that will be required for device simulation.

To illustrate injection along with the absorption, we
consider transient through steady-state transport through an
~21 nm wide metallic armchair graphene ribbon, with an ~23
nm long central region. ! nominally corresponds to a mono-

energetic 95 meV electron relative to the Dirac point within
the metallic subband. However, the amplitude of the incident
wave-function is ramped exponentially toward saturation with
a 20 fs time constant, so it is not truly mono-energetic, at least
prior to saturation. Also, y, was defined as nonzero only

within the “slice”—corresponding to the thickness of the gray
rectangle along the x direction in Fig. 1—of the left lead
immediately adjacent to the central region, which is all that is
necessary. As shown in Fig. 7, near-steady-state conditions are
achieved within the central region well within the 140 fs
simulation period. Moreover, there is no apparent reflection
back from the right lead at any time, as would be readily
observable via a standing wave pattern. (To show more clearly
the evanescing of the probability with position in the lead, the
length of the right lead was extended beyond what was
necessary; again, the probability need only be absorbed before
traversing both ways across the length of the lead.) The results
of Fig. 7(b) also evidence the continued effectiveness of the
proposed ADI methods.
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Figure 7. (a) Snapshots of probability density as function of position
within the central region and a long right absorbing lead over 140 fs with
the non-ADI implementation, with a left-injected nominally propagating
eigen-mode of the ribbon, although ramped up exponentially toward
steady-state with a 20 fs time constant, serving as a source term in the left
lead. (b) A subset of the results of (a) but using non-ADI, ADI1 and
ADI2 methods with essentially indistinguishable results.

Finally, we wish to point out that, although discussed and
illustrated above in terms of a central simulation region and
left and right leads, the Hamiltonian is not actually subdivided
by region and source terms and, separately, absorbing regions
could be placed anywhere within a plane of graphene as
needed to simulate a particular system of interest.

II1.

We have presented a framework for an efficient time-
dependent NEGF method for simulation of dynamic through
steady-state quasi-ballistic intra- and inter-band quantum

CONCLUSION

transport in graphene using an atomistic-tight-binding
Hamiltonian, novel alternating direction semi-implicit
numerical time-evolution schemes, and injecting and

absorbing boundary conditions. The essential elements of this
framework were demonstrated via illustrative simulations.
Extension to multi-graphene-layer systems should also be
possible.
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