
Full-TCAD Device Simulation of CMOS Circuits with a Novel Half-Implicit Solver

Ding Gong and Chen Shen
Cogenda Pte Ltd, Singapore. Email: {gongding, shenchen}@cogenda.com

Abstract—In this paper, we report full-TCAD device simulation
of CMOS circuits with 24 transistors, 1.67 million mesh nodes,
and simulation time of 4.5 hours. Simulation of this scale and
speed is now enabled by an improved half-implicit algorithm
for solving the Shockley equations, and fine-grained tuning for
parallel computation efficiency. The solver algorithm is described
first, followed by its accuracy and performance benchmarks, and
finally its application on large scale problems.

I. INTRODUCTION

TCAD device simulation was traditionally considered as
the tool for analyzing a single device, or at best, small
circuits such as an inverter or an SRAM cell. Simulation of
circuits structures with greater than 1 million mesh nodes was
impractical due to scaling difficulties:

• The metal wires in the circuit have much higher con-
ductivity than the semiconductor regions. The difference
in conductivity greatly degrades the condition number of
the Jacobian matrix. In non-trivial circuits, floating nodes
and feedback loops often occurs, which greatly degrades
the condition number of the Jacobian matrix. In our tests,
condition number as high as 1020 is commonly observed,
which is impossible to solve with iterative solvers.

• In order to cope with the ill-conditioned matrix, direct
solvers are required to get reasonable convergence. Direct
solvers are memory-hungry and do not enjoy much speed-
up in parallel computation. Since solving the matrix
constitutes up to 90% of the total computation time, this
becomes the bottle-neck of TCAD device simulation.

While it is difficult to develop a ”silver-bullet” solver that is
suitable for all large-scale TCAD simulations, in this paper, we
report an algorithm that is suitable for the transient simulation
of CMOS devices and circuits.

II. IMPROVED HALF-IMPLICIT SOLVER ALGORITHM

The Half-Implicit algorithm on transient semiconductor
device equations was first proposed by Mock [1] and later
improved by Polsky [2]. As opposed to the classical implicit
solving algorithm [3], the half-implicit method starts with re-
placing the Poisson equation by its mathematically equivalent
total-current continuity equation. It then solves the carrier-
continuity equation and the total-current continuity equation
sequentially, instead of as coupled-equations. This produces a
non-self-consistent charge error, leading to inaccurate solution
and sometimes oscillations. Polsky introduced a modified
Poisson’s equation to correct the electrostatic potential [2].
In practice, the accuracy and stability was still unsatisfactory.
Despite these problems, due to the smaller size of equations
to be solved, it has the potential to handle large-scale TCAD
simulations.

To further improve the half-implicit algorithm, we propose
to additionally correct the carrier concentration. The improved
algorithm is illustrated in Figure 1, in which the proposed new
step is highlighted.

t=t+Δ t

Linearized e-

continuity eqn
Linearized h+

continuity eqn

Linearized total-current
continuity eqn

Modified Poisson eqn

Carrier Conc. Correction

Solve for variable

nt+ 1 , pt+1

n*
t+ 1 , p*

t+1

φ t+ 1

φ *
t+ 1

Numeric method

n , p implicit
φ explicit

n, p explicit
φ implicit

φ implicit

Fig. 1: Flow chart of the proposed half-implicit algorithm.
Compared to Polsky’s algorithm, a carrier-concentration cor-
rection step is added in each time step.

In each time step, the linearized electron and hole continuity
equations

nt+1 − nt

τ
= − 1

q0
∇ ·

(
µnn

t+1∇φt −Dn∇nt+1
)

+G−R (1a)
pt+1 − pt

τ
= +

1

q0
∇ ·

(
µpp

t+1∇φt +Dp∇pt+1
)

+G−R. (1b)

is first solved. Note that on the right-hand side, the carrier
concentration of the current step is used, and the potential
of the previous time step is used. Therefore, the equation is
implicit on n and p, but explicit on φ, hence the name half-
implicit.

Next, the total-current continuity current equation (2)

∇ · ε∇φt+1 −∇ · ε∇φt

τ
= −∇ ·

(
µnn

t+1∇φt+1 −Dn∇nt+1
)

−∇ ·
(
µpp

t+1∇φt+1 +Dp∇pt+1
)
, (2)

which is a variant of the Poisson’s equation, is solved. In this
step, the equation is implicit on φ, but explicit on n and p.

SISPAD 2012, September 5-7, 2012, Denver, CO, USA

SISPAD 2012 - http://www.sispad.org

272 ISBN 978-0-615-71756-2

In order to correct for the non-self-consistent charge intro-
duced by the de-coupled solution of (1a), (1b) and (2), we first
solve the modified Poisson’s equation (3)

∇ · ε∇φt+1
∗ = −q0

(
ND −NA + pt+1 − nt+1

)
+α

(
nt+1 + pt+1

) (
φt+1
∗ − φt+1

)
(3)

proposed by Polsky [2], where α is an empirical parameter
very close to 1/VT . In the next time step, we use φt+1

∗ instead
of φt+1 as the corrected electrostatic potential.

The key proposal of this study is to further correct the
carrier concentration (highlighted step in Figure 1), and use the
corrected nt+1

∗ and pt+1
∗ in the next time step. Two correction

schemes have been found to be effective and efficient.
Scheme I: The corrected carrier concentrations are given by

nt+1
∗ = nt+1

[
1 + α

(
φt+1
∗ − φt+1

)]
(4a)

pt+1
∗ = pt+1

[
1− α

(
φt+1
∗ − φt+1

)]
, (4b)

where nt+1, pt+1 are the carrier concentration solved from
the carrier continuity equation, φt+1 is the potential solved
from the total-current equation, and φt+1

∗ is the corrected
electrostatic potential obtained from the modified Poisson
equation. This correction does not guarantee conservation of
charge, but the error in charge is in practice negligible.

Scheme II: The carrier continuity equation (5a), (5b) is
solved again to obtain the corrected charge

nt+1
∗ − nt

τ
= − 1

q0
∇ ·

(
µnn

t+1
∗ ∇φt+1

∗ −Dn∇nt+1
∗

)
+G−R (5a)

pt+1
∗ − pt

τ
= +

1

q0
∇ ·

(
µpp

t+1
∗ ∇φt+1

∗ +Dp∇pt+1
∗

)
+G−R. (5b)

This scheme guarantees charge conservation, but involves
solving additional equations, and hence is slower.

It can be verified through spectral analysis that the proposed
scheme I and II both provide better numerical stability than
Polsky’s algorithm. In particular, Scheme II is free from nu-
merical oscillations caused by the non-self-consistent charge.

III. ACCURACY AND PERFORMANCE BENCHMARKS

The proposed algorithm was implemented in the Genius
3D device simulator [4], which is fully parallelized in both
equation assembly and the solving. Since all equations are
linear, in each time step, several linear matrices of rank N are
solved in sequence, where N is the number of mesh nodes.
A fully-parallelized, fully-implicit solver is also available in
Genius as the baseline algorithm.

Unless otherwise noted, in the implicit solver, the inexact
Newton method (with potential damping) is used to solve
the nonlinear equation, and the parallel sparse direct solver
MUMPS [5], [6] is used as the linear solver. On the other hand,
in the half-implicit case, the same direct solver is used for
the total-current continuity equation, and the preconditioned
GMRES iterative solver is used in the other equations. Most

TABLE I: Performance and Accuracy comparison between
implicit and half-implicit algorithms, tested on the 5-stage
ring-oscillator with 250K mesh nodes.

Implicit Half-implicit
Polsky Scheme 1 Scheme 2

Run time (min) 3,691 535 562 909
Speed-up – 6.9× 6.6× 4.1×
RAM used (GB) 23 11 11 11
Stage delay (ps) 28.18 31.39 29.41 29.28
Error in delay (%) – +11.4 +4.36 +3.9

simulations are run on a workstation with 2×Xeon E5620
processors, using 8-way parallelism.

A 5-stage Ring-Oscillator(Fig. 2), among other circuits,
was used for accuracy and performance benchmark. The 3D
RO model was built from the mask layout with a generic
CMOS technology, and has 251,026 mesh nodes. Figure 3
shows the simulated waveform of the RO. Table I compares
the simulation run time and the accuracy (measured by the
difference of stage delay) w.r.t. the traditional implicit solver.

The half-implicit algorithm is known to require smaller time
steps [2], but each time step takes much shorter time, and the
total simulation time is shorter. It is seen that the proposed
improved half-implicit solver achieves 4-7x speed-up for the
250K-node problem. Greater speed-up can be expected for
larger problems. The error in rise time and stage delay is
within 5% (or 1.2ps).

(a) Mask

(b) Mesh

Fig. 2: a) Mask layout, b) TCAD model of a 5-stage ring-
oscillator.

IV. SCALING PERFORMANCE IN PARALLEL COMPUTATION

The proposed algorithm scales up well in parallel computa-
tion. In Figure 4, one can see that scaling only starts to degrade

273

Fig. 3: Two periods of the simulated waveform of the 5-stage
ring-oscillator, using the implicit and various half-implicit
algorithms. Simulated stage delay is shown in Table I.

at 36 cores (on 3 computing nodes), and scaling does not yet
saturate at 96 cores.

1 10 100
10

100

1000

6
8
12

Number of Cores

R
u

n
 T

im
e

 (
m

in
u

te
)

Cores per Host

Fig. 4: Parallel scaling performance of the proposed algorithm
on a device with about 300K mesh nodes. Simulation time
scales well with increased number of CPU cores used in the
simulation up to 96 cores.

The run time of TCAD simulation is dominated by two
modules in the simulator, 1) the assembly of the equations
(and the Jacobian matrix), and 2) solving the linear equations.
In traditional TCAD simulators using the implicit algorithm,
the latter is the eclipsing factor, constituting up to 90% in the
total run time. It is seen from II that the implicit solver in
Genius also follows this pattern.

The above two components have very different scaling
properties. In a well-tuned parallel simulator, the equation
assembly module shows near-perfect parallel scaling, i.e. the
run time scales linearly with the number of mesh nodes, and
inverse proportionally with the number of processors. On the
other hand, the linear solver shows very poor scaling. The time
cost of linear solvers is O (Nγ), with 1.8 < γ < 2.2, and does
not scales up very well in massively parallel computation.

The excellent scaling performance of the half-implicit solver
stems from the fact that it sequentially solving several smaller

TABLE II: Run time of a simulation on an inverter circuit
with 137K mesh nodes using the half-implicit and the implicit
algorithm, and broken down to the individual modules in the
solver.

Half-Implicit Implicit
Module Time (s) Percent Time (s) Percent

Equation Assembly
Carriers Eqns 355 27%
Total Current Eqn 368 28%
Correction Eqn 21 2%
Total 744 57% 6206 29%

Linear Solver
Carriers Eqns 33 3%
Total Current Eqn 455 35%
Correction Eqn 17 1%
Total 505 39% 15062 71%

TABLE III: Breakdown of the run time on a larger SRAM
circuit with 580K mesh nodes.

Module Time (s) Percent
Equation Assembly

Carriers Eqns 2293 27%
Total Current Eqn 2362 28%
Correction Eqn 104 2%
Total 4759 57%

Linear Solveer
Carriers Eqns 208 2%
Total Current Eqn 2613 31%
Correction Eqn 95 1%
Total 2916 35%

systems of equations, rather than solving a large one. As shown
in Table II, in the half-implicit algorithm, the linear solver
takes much less proportion in the total run time, the time
expensed in equation assembly and linear solver modules are
more balanced. The desirable scaling property is preserved in
a larger problems as well, as shown in Table III. As a result,
the half-implicit algorithm is able to fully take advantage
of parallelism and scale up nicely to very large problems
containing more than 1 million mesh nodes.

V. D-FLIPFLOP WITH 1.67 MILLION MESH NODES

D-flipflop is one of the most complex circuits in a CMOS
standard cell library. To test the scalability of the proposed
algorithm, a TCAD model of a master-slave D-flipflop circuit
with 24 transistors, 1,673,519 mesh nodes, and 10,659,866
tetrahedral mesh elements is constructed (Figure 6), for Single-
Event Upset simulation (Figure 7). The active silicon region
(with 300nm from the surface) contains majority (about 1
million) of the mesh nodes.

An 95.35 MeV 17Cl11+ ion strikes at a transistor in the
slave-stage. The energy deposition of the ion in the device
is simulated using Gseat, a particle simulator based on the
GEANT4 library [8].

Transient simulation of 3000 ps is performed with 252
time steps, with the particle-generated carriers included as a
generation term, to study the circuit’s single-event upset (SEU)
characteristics [9]. Four computing nodes are used; each nodes
has two Xeon 5670 6-core processors, providing a total of
48 cores. The peak memory consumption is approximately

274

(a) Schematic

(b) Mask layout

Fig. 5: a) Circuit diagram, b) mask layout [7] of a positive-
edge D-Flipflop circuit; The position where the ion hits the
device is highlighted in the mask layout (X).

190GB, and the run time is 268 minutes. Simulation of this
scale with the traditional implicit algorithm is projected to
require over 1TB memory and take 3-4 days to complete, but
the authors do not have the computing resource to verify this
estimation.

VI. CONCLUSION

In this paper, full 3D TCAD simulation of non-trivial
CMOS circuits is demonstrated to become practical. For the
first time, TCAD device models with > 1 million mesh
nodes can be completed in several hours. The half-implicit
solving algorithm is shown to offer 5x or more performance
improvement, with < 5% error in the estimation of circuit
timing, and scales well in parallel computation.

Extensive tests have been carried out on the numerical
stability of the proposed algorithm. In the month prior to
this writing, over 10,000 transient simulations were performed
on SRAM cells of several technologies for SEU cross-section
evaluation, no convergence failure has been seen.

REFERENCES

[1] M. S. Mock, “A time-dependent numerical model of the insulated-gate
field-effect transistor,” Solid-State Electron., vol. 24, pp. 959–966, 1981.

[2] B. S. Polsky and J. S. Rimshans, “Half-implicit difference scheme for
numerical simulation of transient process in semiconductor devices,”
Solid-State Electron., vol. 29, pp. 321–328, 1986.

[3] S. Selberherr, A. Schtz, and H. Ptzl, “MINIMOS – a two-dimensional
mos transistor analyzer,” IEEE Trans. on Electron Dev., vol. 27, pp. 1540–
1550, 1980.

[4] Cogenda Pte Ltd, “Genius device simulator: User guide,” [Online].
Available: http://www.cogenda.com/article/download.

[5] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, “A fully
asynchronous multifrontal solver using distributed dynamic scheduling,”
SIAM J. of Matrix Analysis and Applications, vol. 23, pp. 15–41, 2001.

(a) Full TCAD model

(b) Zoom-in view

Fig. 6: a) the full TCAD model and b) the zoom-in view near
the active region of the circuit. The large substrate is needed
for accurate simulation of the spreading electrostatic potential
caused by the incident heavy ion (funneling effect).

Fig. 7: Simulated voltage waveform of the zn and n4 nodes in
the D-Flipflop, under 95 MeV 17Cl11+ ion strike. Flip of the
logic state is observed.

[6] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, “Hybrid
scheduling for the parallel solution of linear systems,” Parallel Comput-
ing, vol. 32, pp. 136–156, 2006.

[7] G. Petley, “Dfnt1 standard cell family,” [Online]. Available:
http://www.vlsitechnology.org/html/cells/vsclib013/dfnt1.html.

[8] K. Amako, J. Apostolakis, H. Araujo, and et al, “Geant4 developments
and applications,” IEEE Trans. on Nucl. Sci., vol. 53, pp. 270–278, 2006.

[9] P. E. Dodd, “Physics-based simulation of single-event effects,” IEEE
Trans. on Dev. and Mat. Rel., vol. 5, pp. 343–357, 2005.

275

