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Abstract— We present an integrated modeling of an infrared 
energy harvesting rectenna, which is the integrated combination 
of a micron size antenna and a nano-scale tunneling diode. The 
computational model consists of a 2D electrical potential solver in 
polar coordinate with adaptive gridding to ensure the finest 
resolution around the antenna tip and a transmission matrix-
based Schrodinger equation solver for calculating the electron 
tunneling probability through the junction. The numerical model 
enables us to study the rectifying nature of the rectenna and 
performed scaling analysis of the electron emission from 
rectifying antenna structure. 
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I.  INTRODUCTION 
There are several major radiation sources having wavelengths 
in the infrared range on the surface of Earth: direct solar 
radiation and heat-bodies. The solar radiation in these infrared 
spectra can amount to ~100 W/m2.  Another major source of 
infrared radiation on the surface of the Earth is the heat- 
bodies, e.g. human bodies of temperature around 300 K, 
Earth’s ground and other heat sources with high temperature. 
These heat-bodies emit significant amount of infrared 
radiation, e.g. with peak radiation at wavelengths 9.6 um for 
objects with temperature 300 K. On the other hand, existing 
solar cell materials can absorb radiation with wavelengths 
upto 1.2 um in a relatively efficient way (with efficiency 10-
18%). But, there are no existing efficient ways to harvest 
infrared radiation for wavelengths from 1.25 um to 10 um.   
 
Recently a number of developments in nano-antenna design 
and fabrication [1] have taken place. These developments are 
of industrial significance and motivate us to develop models to 
investigate a promising infrared energy-harvester structure: 
rectenna.  A rectenna is formed with a thin layer of metallic 
triangle with a sharp tip placed next to a layer of metallic 
rectangle on top of a substrate. The rectenna is designed to 
harvest energy by rectifying infrared electromagnetic wave 
through tunneling diode structure formed with the metallic tip-
rectangle junction. The sharp tip of the triangle patch will 
focus and enhance the electric field under radiation so that it is 
high enough to enable electrons to tunnel through the junction 
[2]. To quantify the performance of rectenna energy harvester, 
we developed an integrated modeling tool to solve for electric 

potential field distribution around the tip-rectangle junction 
and use the spatial electric field configuration to feed to 
Schrodinger equation solver to calculate electric field emission 
under forward and reverse-bias configurations. The model 
enables us to quantitatively evaluate the dependence of the 
electron emission efficiency on the various designs of the 
rectenna such as antenna tip sharpness, gap distances, etc. 

II. SIMULATION MODEL 

A. Simulation Geomatry 

The rectenna structure is modeled in polar coordinates. Fig. 1 
shows the zoom-in view of grid configuration in which grids 
with radially adaptive gridding are employed to ensure the 
finest resolution around the metal tip. The simulation domain 
spans from 0   to 0   azimuthally and the 

azimuthal boundary is located at 0  with the angular 

span of the sharp tip being 2 0 .  The metallic nature of the 

sharp tip is prescribed as the boundary condition at 0   
in the simulation. In total, 300 uniformly-spaced grids are used 
azimuthally and 400 non-uniformly-spaced grids are used 
radially with the finest resolution = 0.1 nm around the tip.  
 

  

Fig. 1: Structure of rectenna and zoom-in view of simulation 
grid configuration.  
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B. Electric Potential Solver 

The electric potential field ),( r  within the gap between 
the metallic sharp tip and rectangular patch can be obtained by 
solving the Poisson's equation: 


  ),(2 r ,    (1) 

where  is the charge density and   is the permittivity of the 
medium. In our case, the charge density 0  within the gap 
region and the potential field in polar coordinate satisfies  
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Eq. (2) is discretized onto the polar coordinates ),( jir  (see 
Fig. 1) with i = 1,…, nr and j = 1,…, nθ. The boundary 
conditions for ),( r  satisfies the biasing potential 
difference between the metallic sharp tip and rectangle patch. 
For a sharp tip, the boundary condition is specified 
as 11 ),(),( Vrr nii 


 . For the rectangle patch, the 

boundary condition is specified as 2),( Vr ji   for ),( jir   

satisfying dr ji )cos( , where d is the gap distance between 
the sharp tip and rectangle patch. To solve for the potential 
field configuration fromEq. (2), it requires the inversion of a 
block diagonal matrix and we used sparse matrix algebra  to 
obtain the solution.  

 
C. Electron Tranmission Calculation 

Using the numerically obtained 2D potential field 
distribution ),( r , we can calculate the electron tunneling 
probability through the junction by solving the Schrodinger 
equation. The time-independent Schrodinger equation across 
the gap can be written as 
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where ),( r  is electron wave-function, m  is the electron 
mass, E is the electron energy. To calculate the tunneling 
probability, we approximate the potential barrier as in one 
dimension along radial direction for each discrete azimuthal 
angle j  ,  and Eq. (3) can be approximated as  
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By doing so, we have neglected the 1/r2 term as compared to 
other energy terms. Such kind of approximation was used and 
justified in [3, 4] for solution of electron emission from sharp 
spherical and cylindrical surfaces.  
 

A variety of approximate and numerical techniques for solving 
the Schrodinger equation were developed [5–8]. We adopted 
the transmission matrix-based approach developed by Ando 
and Itoh [6] to numerically solve Eq. (4). The numerical 
scheme can calculate the electron transmission coefficient and 
current across arbitrary potential barriers. In this method, 
multistep potential approximation is used to approximate 
variations of potential energy and electron effective mass. The 
final transmission coefficient is calculated by connecting 
momentum eigen-functions. This method is briefly 
summarized as follows. The discretize wave function )(ri  
in the ith region along r for an electron with energy E can be 
expressed as 

)exp()exp()( rikBrikAr iiiii  .  (5) 

From continuity of wave function and its first derivative, the 
wave amplitude ( iA , iB ) in the ith region can be obtained with 


























 


 0

0
1

1 0

0

B

A
M

B

A
M

B

A i

l
l

i

i ,   (6) 

where Ml is the transmission matrix for lth region and its 
detailed form can be found in [6]. By setting 10 A and 

0
rnB , we can obtain the transmission amplitude  

rnA and 
thus determine the electron transmission probability. 

III. SIMULATION RESULTS 

A. Electric Potential Field Distribution of Rectanna  

Fig. 2 shows the numerical solution of potential field 
configurations obtained for forward-biased rectennas of 
different tip angles and gap distances. The sharp metal tip is 
negatively biased. The solution is able to resolve the sharp 
potential change around the tip and across the narrow gap with 
the spatial resolution varying from sub nanometer to sub-
micron. This is made possible through the adaptive gridding 
we used in the radial direction.  

B. Scaling of ElectricFfield Enhancement  

Fig. 3a and 3c shows the dependence of the potential field 
distribution along the 0  axis across the gap on the gap 
distance and conical angle of the metal tip.  The electric 
potential changes sharply when the gap distance shrinks.  With 
the potential field solution, we are able to calculate the electric 
field which is responsible for the electron emission and further 
derive the electric field enhancement factor. The electric field 
enhancement factor is defined as relative to the incident 
electric field amplitude illuminating on a rectanna with a 
triangular patch of 2.5 um height (one quarter of the 10 um IR 
wavelength). Fig. 3b and 3d shows the dependence of the peak 
electric field enhancement factor on the gap dependence and 
antenna tip angle. In general, the peak electric field within the 
gap depends strongly on the gap distance and the field is 
stronger with a sharper tip and narrower gap. 
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(a) 

 
(b) 

Fig. 2: Simulated potential field configuration for forward-bias rectennas with 
(a) tip angle = 30 deg. and gap distance = 10 nm, and (b) tip angle = 90 deg. 
and gap distance = 100 nm. 

 

 
Fig. 3: (a, c) Voltage distribution along x for different gap distances and cone 
angles, respectively. (b, d) Peak electric field enhancement factor within the 
gap vs. gap distance and cone angle, respectively. (a, b) tip angle = 30 deg; (c, 
d) gap distance = 10 nm.  

C. Illustration of the Rectifying Nature of the Rectenna 

 

(a)  

 
(b) 

 
(c) 

Fig. 4: Illustration of electron potential energy configuration over the gap for 
rectenna under (a) floating (b) forward (barrier width varies from 0.6 to 2.4 
nm) and (c) reverse bias.  

We first use Fig. 4 to schematically illustrate the rectifying 
nature of the rectenna. Fig. 4a shows the potential energy of 
electron over the gap of potential barrier V0 for a floating 
rectenna without illumination of IR radiation. With forward-
bias, the potential energy of electron across the gap is shown 
in Figure 4b. Under forward bias, the potential field changes 
sharply away from the tip and the effective barrier  is narrow. 
It is easier for the electron to tunnel through the barrier and 
produce emission [2]. Under reverse-bias as shown in Fig. 4c, 
the potential field changes gradually away from the rectangle 
patch and the effective barrier is wide. Therefore the electron 
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emission is harder. These asymmetric aspects in the electron 
tunneling under forward and reverse-bias are further 
quantified in next section. 

D. Electron Tunneling Probability Calculation 
We next use the Schrodinger equation solver to calculate the 
electron tunneling probability through the junction with the 
calculated 2D electric potential field distribution for various 
configurations of forward and reverse-bias rectennas.  
 

 

 
Fig. 5: (a) Electron tunneling probability of selected electron energies vs. 
polar angle around the antenna tip for forward and reverse-biased rectenna. 
Gap distance = 5 nm. (b) Electron tunneling probability for electron of energy 
0.2 eV vs. polar angle at forward-bias for rectenna of different gap distances. 
For (a) and (b), antenna tip conical angle = 30 deg and electric potential 
barrier height = 0.4 V.  

Fig. 5a shows the calculated electron tunneling probability vs. 
polar angle around the rectenna tip for forward and reverse-
bias configuration. The conical angle of antenna tip is 30 
degrees and potential barrier height is 0.4 V. It can be seen 
that the tunneling probability under forward-bias is orders of 
magnitude higher than under reverse-bias. For a rectenna with 
5 nm gap distance under forward bias, the barrier width 

around the tip is 0.6, 1.4, and 2.4 nm for electron of energy 
0.1, 0.2, and 0.3 eV below the barrier, respectively, which 
explains the high tunneling probability. Under forward-bias, 
tunneling probability is high over a much wider range of polar 
angle around the tip. The asymmetric geometry of the rectenna 
enables directional tunneling of electrons and the sharp tip 
field enhancement further enhances the directional tunneling. 
Therefore, the rectenna can effectively rectify electron current 
and harvest infrared energy. Fig. 5b shows the electron 
tunneling probability for electron of energy 0.2 eV vs. polar 
angle for rectenna of different gap distances. In general, the 
tunneling probability increases sharply with the decreasing 
gap distance.  

IV. SUMMARY 
In summary, an integrated numerical model was developed to 
investigate the electron emission from rectifying antenna 
structure. The model consists of a 2D electrical potential 
solver with adaptive gridding to have the finest resolution 
around the antenna tip and a transmission matrix-based 
Schrodinger equation solver for calculating the electron 
tunneling probability. In general, we strive for smaller gap 
distance, sharper metallic antenna tip angle and lower barrier 
height to increase tunneling probability and tunneling current. 
But it is also important to consider that the gap distance can’t 
be too small so that the capacitance is not exceptionally large 
to have large RC constant and diminish the rectifying ability. 
The rectenna shown in this paper can also be used for infrared 
wave detection applications. 
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