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Abstract— As the transistor scaling continues, self-averaging of 

device properties for individual devices becomes less effective and 

thus the statistical variability of device properties become more 

prominent. Here we present the impedance field method (IFM) 

for statistical variability analysis, which provides a fast, 

convenient and accurate alternative to “atomistic” approaches 

and compare the two methods with respect to accuracy, 

calibration requirements and turn-around time. 
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I.  THE IMPEDANCE FIELD METHOD 

The basic idea behind the IFM is to treat the randomness as 
a perturbation of a reference device. Rather than solving the 
full, nonlinear Poisson and drift-diffusion equations for a large 
number of random device realizations, the 3D TCAD solution 
is obtained only once for the reference device. The current 
fluctuations at the device terminals caused by these random 
perturbations are then computed in linear response using a 
Green’s function technique [1]. For modeling statistical 
variability we present three different variants of the IFM: The 
noise-like IFM, the statistical IFM and the deterministic IFM. 

IFM can be applied to random doping fluctuations, bulk 
and interface trap fluctuations, geometric fluctuations (e.g. 
oxide thickness and line edge roughness), metal gate work 
function fluctuations as well as model parameter fluctuations 
[2]. As an illustration we discuss here these IFM variants for 
the example of random doping fluctuations. For all three IFM 
variants the 3D TCAD solution for the reference device with 

the doping profiles     
   ⃗  is obtained first. The resulting 

terminal current deviation at a contact c follows from:  

       ∑∫     
   ⃗ 

 

   
   ⃗      

   ⃗       

where    
   ⃗  is one particular random doping realization for 

the doping species s. (See for example Figure 1). The Green’s 
function    

   ⃗ , which is also called the “impedance field”, 
does not depend on the random doping realization. Within the 
noise-like IFM (nIFM) only second moment, i.e., the drain 

current variance       
 〈    

    
〉  is computed. (Also the 

threshold voltage variance can be computed from       
.) 

Within the statistical IFM (sIFM) Eq. (1) is used directly, and a 
statistical sampling using a large number of random doping 
realizations   

   ⃗  is performed to compute the small-signal 

current responses       at each contact c. From       the full IV 

curves of the randomized devices is constructed [3]. For 
deterministic IFM (dIFM), the variations are explicitly defined 
by the user. For example for deterministic doping variations in 
Eq. (1) the random doping realization   

   ⃗  is replaced by a 
user defined actual modified doping profile. 

The nIFM has been shown to yield accurate results for the 
standard deviations when the compared with “atomistic” 
methods [4]. The statistical IFM can also be applied when the 
knowledge of the standard deviations of terminal currents or 
voltages are insufficient. For example, for the statistical 
variation of the static noise margins of an SRAM cell. Fig. 2 
shows the butterfly curves for 1000 randomizations of the 3D 
6T SRAM shown in Fig. 1 for 4 different values of the supply 
voltage. Fig. 3 shows the butterfly curves for two selected 
randomizations for five different supply voltages. Consistent 
with experimental data given in Ref. [5] the sIFM results show 
that the shape of the butterfly curves at the full supply voltage 
is not a good predictor of the shape of the butterfly curves at 
lowered supply voltages. Even cells with very similar shaped 
butterfly curves at the full supply voltage can show quite 
different behavior at lowered supply voltages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Example of a randomized realization of a 3D 6T SRAM Cell. 

Upper panel: donors. Lower Pannel: Acceptors. Oxide regions are suppressed 
for better viewing and nitride spacer are shown transparent. 
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II. COMPARISON IFM AND “ATOMISTIC” APPROACHES 

Another approach, which is often used to analyze 
variability in semiconductor devices, is the so-called 
“atomistic” method [4]-[9] . In this section we investigate how 
the IFM method compares to “atomistic” approaches with 
respect to accuracy and turn-around time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Large or Small Perturbation 

The accuracy of any linearization approach is inherently 
limited to “small” perturbations. However, it is not obvious 
how to judge the “smallness” of the perturbations associated 
with quantities relevant for variability analysis. For example in 
the channel of a typical MOS structure the doping 
concentration may be around 10

18
/cm

3
. After the “atomization” 

procedure in the channel area only 1 in about 100 mesh 
elements harbors a (single) dopant, resulting in an effective 
concentration of 10

20
/cm

3
 per mesh element, assuming a typical 

channel mesh element volume of 10 nm
3
. All other channel 

mesh elements remain undoped. A deviation from the average 
doping concentration of 10

18
/cm

3
 to either zero or 10

20
/cm

3 

certainly does not seem “small”. However, one has to 
remember that most relevant quantity is the resulting carrier 
concentration, not the doping concentration. It is the accepted 
standard to include the density gradient quantum correction 
model [10] for advanced MOSFET TCAD simulations in 
general and for random doping variability analysis in particular 
[8]. Even for such a large variation of the local doping 
concentration we find that when using the density gradient 
model the carrier concentration variability in the channel is 
quite well-behaved and limited to about one order of 
magnitude. This observation in itself does not prove the 
applicability of the linearization approach, but combined with 
the fact that nIFM has been shown to yield accurate results for 
the standard deviations when the compared with “atomistic” 
methods [4], lead us to conclude that the effective perturbations 

are in fact “small” enough such that the linearization approach 
remains valuable. 

B. Transport Model Parameter Selection 

The semi-empirical TCAD transport models have been 
developed and calibrated assuming continuous doping profiles, 
which represent an implicit “average” device. These TCAD 
transport models consequently contain semi-empirical non-
linearities which are often expressed in terms of readily 
available numerical quantities. For example widely accepted 
mobility [11], [12] and band structure [13] models use the local 
doping concentration as an effective parameter instead of the 
carrier concentration in order to make the model more robust. 
The careful calibration of these semi-empirical TCAD 
transport models during the last two to three decades has 
ensured reliable TCAD results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We find that certain TCAD transports models, such as the 
above mentioned ones, are ill-behaved when applied to 
randomized doping profiles. This indicates that many well-
established TCAD transport models are not suitable for the 
“atomistic” approaches if used in a standard manner. To 

 

Figure 2: SRAM butterfly curves for 1000 randomizations of the 6T SRAM 

cell shown in Fig. 1 using sIFM. The white lines: reference device. “fitted” 
squares: average static noise margin. The supply voltages are (top- left to 

bottom-right): 0.8V, 0.4V  

 

Figure 3: Butterfly curves at Vdd= 1.0, 0.8, 0.6, 0.4, and 0.2V for two devices 

with an effective SNM of 0.145V at Vdd= 1V. Left panel: a device for which 
one lob collapsed. Right: a device with the largest effective SNM at Vdd= 0.2V 

 

Figure 4: IdVg curves for the first 200 randomization and threshold voltage 
histogram for all 1000 randomizations of the NMOS transistor of the SRAM 

cell shown in Fig. 1. From top to bottom: random doping fluctuations, metal 

-gate work function variation, interface trap fluctuations, and all variability 

effects combined. 
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illustrate this point we are comparing the TCAD simulations 
results for a reference device with the “atomistic” results for 
randomized devices when activating only a single transport 
parameter model at a time (otherwise, just the Poisson and 
carrier continuity equations are solved assuming a constant 
mobility and no band gap narrowing). We find that when the 
bandgap narrowing [13] model is activated the on-state drain 
current is systematically about 30% lower than that of the 
reference device. When activating the bulk Philips Unified 
Mobility [11] model current is systematically 500% higher. 
When activating the Lombardi surface degradation [12] models 
we find that the current is systematically 80% lower. This 
systematic deviation can be explained by considering that for 
all randomized devices the electrons in the channel experience 
about 99 out of 100 mesh elements as undoped – and 
consequently see little bandgap narrowing and bulk doping-
dependent mobility degradation. For the Lombardi surface 
degradation models the screening contribution to the surface 
phonon scattering term uses the local doping concentration as 
an effective parameter, resulting in the artificial suppression of 
the mobility in undoped mesh elements. Such artifacts can be 
mitigated by carefully selecting a set of TCAD transport 
models, which are less susceptible to such effects and by 
carefully re-calibrating parameters [8],[14]. Also, it is also 
standard practice [14] to evaluate the mobility using the 
reference doping profiles instead of the “atomized” profile. 
While this trick certainly helps to mitigate the aforementioned 
artifact in “atomistic” TCAD simulations, this trick also 
excludes any doping variability effects on the mobility, and 
thus limits the predictability of the “atomistic” approach. 

C. Conductor network non-linearity 

Even after carefully selecting a set of TCAD transport 
models and parameters appropriate for “atomistic” simulations 
we find that the average of extracted quantity, such as for 
example Vth or Ion, over the “atomistic” simulations may not 
correspond to the value of the unperturbed reference device (a 
similar observation was first reported in [6]). Such a behavior 
can be understood in terms of the simple analytic model of a 
set of N parallel chains of M lumped conductors per chain. The 
IV relation of this model is given by: 

   ∑
 

∑
 

    

 
 

 

 

     

Where σi,j is the conductance of the j
th
 conductor in the i

th
 

chain. The conductivities are randomized around an average 
value of σo, i.e.,               . In linear response we find: 

     

 

  
  

 

  
∑    

   

     

For parallel lumped conductors (M=1) the linearization is 
exact, otherwise it is an approximation. This simple model 
qualitatively reproduces the residual average shift observed 
when comparing IFM and “atomistic” results. 

D. Re-Calibration requirements 

The average shift in “atomistic” simulations poses a 
conceptual problem. The model introduced in Sec. C shows 
that it is a direct consequence of the non-linear nature of the 

problem that the average response of the “atomistic” simulation 
does not correspond to the result of the reference simulations. 
This problem highlights the fact that the “atomized” structures 
(with 1 or 0 dopants per element) are qualitatively different 
from the reference device with about 1/100 dopants in all 
elements. It is therefore necessary to perform a separate re-
calibration for the perturbed devices when using “atomistic” 
approaches [8],[14]. This re-calibration requirement makes it 
hard to leverage the decades of experience of continuum 
TCAD and also makes it difficult to directly compare the 
standard TCAD results with “atomistic” variability predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to the linear nature of IFM it is automatically 
guaranteed that the average of any extracted quantity is the 
same as the corresponding value of the unperturbed reference 
device and consequently no re-calibration is necessary and the 
same set of well-established TCAD transport models and 
parameters can be used the reference device as well as for the 
variability analysis. We can therefore expect that at least for 1-
2 standard deviations away from the average IFM will provide 
meaningful results and up to 3 standard deviations will still 
provide a good trend analysis. 

Fig. 5 shows electrical parameters extract from IVs for 200 
randomized MOSFET. The IVs are computed either using the 
“atomistic” or the sIFM method. Fig. 5 shows a clear 
correlation between the “atomistic” and the sIFM results. The 
systematic shift between the “atomistic” or the sIFM, which is 
particularly pronounces for the on-state current is mainly 
caused by the conductor network non-linearity effect, which 
also contributes to a slight deviation of the slope of the 
correlation from unity. 

The distribution of the sIFM results are Gaussian by design. 
Observing that the correlation is of a “tight-cigar” type, this 
also means that, in spite of the non-linearities, the distribution 
of the “atomistic” results is also mainly Gaussian. We attribute 
that to the effect of the Central Limit Theorem (See Sec. E.).  

E. Distribution Tails 

While the linear nature of IFM makes the method 
unsuitable for the investigations of rare tail events, 

Figure 5: Correlation of threshold voltage, DIBL , on-state current, and 
logarithm of off-state current computed using the “atomistic” (ATO) and the 

statistical impedance field method (IFM).  

Dashed line: linear regressions. Solid line: reference unity line. 
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experimental results [15] indicate that the variability of the 
threshold is indeed well-described by a Gaussian distribution. 
Even “atomistic” investigations have indicated that the 
dominant contributions to the threshold voltage variability 
results in mainly Gaussian-shaped distributions [4]. A 
linearization approach, such as the IFM method, is inherently 
incapable to make meaningful prediction about non-Gaussian 
tails due to non-linear effects. When performing “atomistic” 
simulations for the conductor network with a single chain 
(N=1) we indeed observe non-Gaussian distribution tails 
consistent with the non-linear nature of the problem. When 
adding more chains, however, the non-Gaussian distribution 
tails are diminished and for N>10 are no longer detectable. 
This observation is consistent with the Central Limit Theorem 
which states that self-averaging, here over the different 
conductor chains, results in Gaussian-like distributions, 
independent of the underlying statistics. For semiconductor 
devices the more-or-less statistical independent current paths 
from the source to the drain provide such a self-averaging 
mechanism, explaining why experimental observed distribution 
tails are often consistent with a Gaussian distribution. 

F. Turn-Around Time 

For the IFM the main computational overhead comes from 
the computations of the Green’s function, which typically takes 
as long as the computation of the TCAD solution itself. The 
computation time for the linear response to a particular 
perturbation, however, is quite negligible. One can therefore 
compute the linear responses to for example 10,000 random 
perturbations in roughly the time that it would take to compute 
2-3 “atomistic” responses. To obtain any statistically relevant 
results from “atomistic” a bare minimum of 200 3D TCAD 
simulations are needed – but often 1,000 [4] or even 100,000 
[9] are used to obtain acceptable statistics. Because of the large 
computational effort “atomistic” simulations often resort to 
simplified geometries to speed up the individual TCAD 
simulation. For IFM on the other hand it is very feasible to 
include the actual potentially complex geometric details in the 
analysis. Further, “atomistic” simulations always have to be 
performed in 3D, even if the reference device structure of 
interest has a 2D symmetry. For IFM on the other hand, if the 
variability source is spatially delta-correlated (as is the case for 
RDF) 3D variability results can be obtained from 2D 
simulations without any loss of accuracy. In this case the 
integration over the third-dimension can performed 
analytically. This results in an additional tremendous speed up, 
when applicable. 

III. SUMMARY AND CONCLUSION 

IFM is based on linear response theory. This fact results in 
advantages and some disadvantages over “atomistic” 
approaches. The first advantage is turn-around time – a full 
analysis of variability effects takes only about 2-3 times as long 
as a standard continuum TCAD simulation run, while 
“atomistic” approaches would typically take 200-10,000 times 
as long. The second advantage is that IFM directly benefits 
from all calibration work done for the continuum device, while 
“atomistic” approaches require a possibly tedious re-calibration 
and even a distinctly different transport model parameter set. 

A disadvantage of IFM is that as a linear response theory it 
is limited to “small” perturbation, when it is not a-priory clear 
how to verify the “smallness” of a given perturbation. While 
“atomistic” approaches can account for non-linarites of the 
transport model parameters, many of these non-linarities stem 
from convenient semi-empirical parameterizations and are not 
necessarily physical. It is therefore at least questionable if the 
“atomistic” results are more accurate compared to IFM in the 
limit of large perturbations. 

In all the IFM method is a fast and attractive approach to 
investigate variability effects in semiconductor devices.  
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