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Abstract—The variability issues caused by device scaling require 

a more comprehensive variation model. A conventional corner 

model approach that lumps all the variation sources into one 

corner makes the design sign off extremely difficult for leading 

edge technology. In this work, the different types of variation 

sources have been characterized and modeled associated with 

simulation flow. The impact to the design with different variation 

combination is also introduced. This is the first time the three 

types of variation have been fully integrated through compact 

modeling. 
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I.  INTRODUCTION 

A comprehensive variation model is critical to achieve 
competitive design and manufacturing yield for advanced 
technologies. Each variation type may have different impacts 
to circuit performance [1]. Intra-die variations (often referred to 
as local variation), such as dopant fluctuation and line edge 
roughness [2], [3], can be cancelled out in critical paths with 
long stages. As a result, the local variation makes only minor 
impact for digital-like application. However, for an adjacent 
pair, the local variation is main source for the mismatch, so a 
correctly characterized local variation model is very critical to 
the analog design. Inter-die variation (often referred to as 
global variation), on the other hand, occurs to all devices in the 
same die and cannot be cancelled among devices. The inter-die 
variation that impacts devices globally becomes a dominant 
factor for the performance of stage delay and is main variation 
source for digital application. Compared with local variation, 
the global variation is more related to the concern of yield. In 
addition to these two types of variation, the amount of variation 
between two devices may depend on their relative locations in 
the chip due to the process uniformity. This type of variation 
requires a different approach to address and may have 
significant impact on both digital (timing sign-off) and analog 
(mismatch) design as the variations are spatially correlated. In 
this work, a novel characterization methodology to distinguish 
different variation sources is proposed, including test structures 
and data analysis flow. The new modeling methodology is also 
developed, especially for the spatial variation modeling. The 
transistor level model and simulation results are presented and 

verified with 28nm technology data. Finally, the impact of the 
different variation sources and their partition ratio to the circuit 
are discussed. 

II. MODELING METHODOLOGY 

According to the nature of technology manufacturing, 
random process variation can be classified into three categories, 
local (intra die), global (inter die) and spatial (distance) 
variations. Since these three types of variation are relatively 
independent, for a given chip size, the total variation for a 
single transistor can be expressed as: 

 total
2
 = global

2
local

2
spatial

2
 

Where _global, local and spatial represent the sigma of global, 

local and spatial variations respectively. _total is the total 
variation observed from a single device. In session A below, 
the test patterns and characterization flow will be discussed. 
The modeling methodology will then be discussed in session B. 

A. Variation Characterization  

Taking the advantage of different variation characteristics, a 

set of test patterns can be designed specifically to identify the 

magnitude of variation for the modeling purpose. 

Figure 1.  Illustartion for the within die mismatch pair test structure. The 

global variation, G, can be removed by the subtraction between two devices. 

The _local = _mismatch/sqrt(2). 

Firstly, the local variation, _local, can be extracted from the 
mismatch variation of an adjacent device pair as described in 
Fig.1, (Id1-Id2)/(Id1+Id2)/2. Since the distance is negligible 
between adjacent patterns, no spatial needs to be considered.  
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Figure 2.  OCV test structure. The identical devices are placed repeatedly 

over the whole die. The magnitude of mismatch for different distance can be 
extracted from a given pair of devices. The same set of structure can be also 

used to define the die median for global variation. 

Secondly, due to the random behavior within a die, the local 
variation can be cancelled among multiple transistors. 
Consequently, people commonly use an array of N devices to 
identify global variation. The variation of an array of N devices 
is equal to 

 array
2
 = global

2
local

2
/Nspatial

2
 

Although the local variation can be reduced by the array 
structure, the spatial variation still exists. As a result, there is a 
new set of test pattern needed to resolve this issue. We propose 
an OCV (On-Chip Variation) structure shown in Fig.2 to 
separate the global and spatial variations. The OCV structure 
consists of a set of identical patterns placed at multiple sites 
within a die. The proximity environment of each transistor is 
also maintained the same for the variation characterization. The 
mismatch between any two devices in the structure can be 
measured without the influence of global variation.  

Figure 3.  Data collected from OCV structure. Each small dot represents the 

sigma of delta (Id1-Id2)/average(Id1+Id2). The circle A at distance=0 is 

consistent with the local extracted from mismatch pair. The circle B at 

distance=37500um can be used to extract _spatial. 

The results shown in Fig. 3 are 28nm technology data. We 
plotted the sigma of local variation versus distance between 
two devices. Each data point represents the sigma of delta 
between two identical devices measured across the wafer. The 

extracted variation can be defined as _OCV that includes the 
pure local variation and spatial variation as following:.  

 OCV
2
 = local

2
spatial

2
 

The sigma of delta between closest pair (dot at distance=0) can 
be benchmarked with conventional local variation patterns, 

_local. In addition, the pure spatial effect variation, _spatial, 
can then be evaluated from the longest distance pair (data at 

distance=37000um, circle-B). Once we know _spatial, the 
global variation can be obtained from the following equation: 

 global

total


local


spatial


 

If we sum up all the devices in the OCV structure and take the 
median (call this parameter OCV median) for each die, the 
local and spatial variation will be mostly cancelled out in OCV 
median due to random variation among multiple devices and 
locations respectively. Thus, global variation can also be 
calculated from the sigma of the OCV median. This is another 
way to confirm the number obtained from Eq. (4) for global 
variation. In other words, the OCV test structure can serve as 
unified test patterns for local, global and spatial variation 
extraction. 

B. Modeling and Simulation Methodology 

The local variation model can be implemented based on 
1/sqrt(area) scaling [4]. However, the capability of scaling is 
highly process dependent and it may reach some lower bound for 
the extremely large devices and never go through the origin point. 
The variation cancellation effect for the long path circuit or 
mismatch for analog-like application can be reflected through 
Monte Carlo simulation. The global variation is modeled either 
by a conventional corner or Monte Carlo approach. While doing 
Monte Carlo simulation for global variation, all the devices share 
the same set of random numbers in one Monte Carlo run. As a 
result, there is no more cancellation happened while the number 
of transistors increasing. In addition to the well defined local and 
global variation, the nature of spatial variation lies between 
global (dependent) and local (independent) variations. We 
describe the random variation between two devices for spatial 
effect as below: 

;_)(1_)(_

;__
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randevdisRrandevdisRrandev

randevrandev



  

Where dev1_ran and dev2_ran are two independent random 
numbers for two devices and the sigma of random number is 

equal to _spatial. R(dis) is a function of distance representing 
the spatial correlation coefficient between two transistors. To 
include the spatial effect, we modify the variation of the two 
random numbers as dev1’_ran and dev2’_ran for dev1_ran and 
dev2_ran respectively. Note that the sigma magnitude of each 
random is unchanged after this modification. However, when the 
mismatch between the two devices is considered, the spatial 
correlation of the two devices is linked through R. Neither local 
nor global variation can describe the spatial variation precisely.  
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OCV data: Local and Spatial Variation
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Figure 4.  R v.s. Distance. For adjacent paired devices, the R is equal to 1. On 

the other hand, the R is close to zero for the longest paired device. Namely, 
the smaller R is, the larger spatial effect is observed. 

Assume the R is a linear function of distance as shown in Fig. 4. 
For an adjacent paired devices, R=1 and two devices share the 
same random number for spatial effect, so the spatial effect is 
supposed to be cancelled as mismatch pair discussed in Fig. 1. 

There is only local variation, _local between two devices. On 
the other hand, R is close to 0 for a longer distance paired 
device, so two devices are with two different random numbers 
for spatial effect. As a result, there will additional spatial effect 
between two devices. The extreme value of variation is at R=0 

and is supposed to be equal to _OCV as expressed in Eq. (3).  

Figure 5.  The on-chip-variation (OCV) fitting results base on proposed 

distance correlation equation. The case of R=1 is for the closest pair. The 

variation is equal to the conventional mismatch pattern without spatial effect. 

The case of R=0 is for longest distance pair. The spatial effect is observed. 

We fitted the OCV data based on linear R assumption 
mentioned above. As shown in Fig. 5, the solid line, which 
considered the local and spatial variation together, can fit the 
OCV variation data well. By taking out the local variation from 
solid line, the dash line represents the spatial effect only. Due 
to the distance dependent R, the final spatial variation 
represented by dash line becomes distance dependent. For the 
case of distance=0, the variation is equivalent to the 
conventional mismatch pattern without additional spatial effect. 
At the longest distance, an additional spatial effect is observed 
and modeled by the proposed equation.  

To extend the correlation for the multiple devices, a correlation 
matrix is introduced. The correlation matrix can keep the 

magnitude of sigma for each random number unchanged, but 
the correlation for any given two devices can be added [5]. 
However, it’s impractical to build a correlation matrix for 
every device pair in the circuit. In our example, we divide a 
chip into a few zones as shown in Fig. 6. Only devices between 
different zones have spatial variation (R<1). The correlation 
matrix between zones has the form as shown in Fig. 6. The Rij 
describes the random number dependence and can be obtained 
from curve shown in Fig. 4. 

Figure 6.  The area partition for layout extraction tool. The correlation matrix 

can be used to describe the random number depdenence among different 

zones. Rij represents the correlation coefficient between two zones. The value 

of Rij can be obtained from Fig. 4 basedon the given distance. 

III. IMPACT ON CIRCUIT DESIGN 

Two cases are discussed in this session. The first case 
focuses on the timing skew between paired delay chains. 
Namely, it is to discuss the mismatch for the path. The second 
case is to define a correct 3-sigma corner for delay chain due to 
additional spatial effect. The impact from each variation 
component will be discussed in the following two examples. 

A. Example I: Timing skew within two delay chains. 

The timing skew between two clock trees is important for 
sign off. Traditionally, only local and global variations are 
considered [6], and a guard band is used to cover the spatial 
effect. However, it’s difficult to define an optimized guard 
band. Based on the methodology discussed above, the timing 
skew between two paths can be expressed as the following: 

2

2

)22(
2

)21( spatial

local R
N

delaydelay 


   

Where _local, _spatial and R can be extracted from test 
patterns described above, N is the number of transistors and 
global variation has been cancelled between two paths. To 
validate this model, a group of 101-stage delay chains are 
selected and placed all over a chip at multiple sites. The delay 
delta between two delay chains is simulated and compared with 
measured data. The comparison results for two types of circuits, 
INV and NAND delay chain, are shown in Fig.7. The delay 
skew between two paths caused by local variation is greatly 
reduced due to multiple devices within each path. For the two 
paths nearby, the spatial effect is negligible because of strong 
spatial correlation (R=1). On the contrary, for the two paths 
with distance, the spatial effect exists and can be modeled by R. 
The correlation is weak (R=0) for the longest distance case. As 
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a result, even with a long stage, the variation skew won’t be 
cancelled as people used to think. The skew still exists due to 
the spatial effect. It increases obviously when the distance 
increase. 

Figure 7.  The fitting result for timing skew variation v.s. distance between 

two paths. Two examples, inverter and NAND delay chains are presented here. 

The local and global variation have been greatly reduced and subtracted 
respectively. The timing skew is mainly caused by spatial variation. The delta 

of sigma is getting larger along with the  distance. 

B. Example II: Delay time variation for a delay chain 

In this case, we’d like to define a correct 3sigma variation. 
If the whole delay chain is placed across the different zones. 
The correlation coefficient R among different transistors is 0 
~1 as described in Fig. 4. The spatial variation is dependent on 
R and local variation reduction is dependent on number of 
stage N. However, if the whole delay chain is located within 
the same zone, the R is equal to 1 and the variation is as the 
following: 

N
delay local

spatialglobal

2

22
)(


       

In other words, the spatial effect becomes another global 
variation without any cancellation. The additional margin is 
definitely needed for the design sign-off, since this variation 
cannot be reduced along with the number of stage. Assume the 

same amount of 5% global, local and spatial effect is 
applied to two types of circuits as shown in Fig. 8. An 
additional 3% for 3-sigma corner is required to cover the non-
cancelled spatial effect for type A circuit compared with type B 
circuit. This is another example to show the importance of 
variation analysis. 

In summary, the mismatch caused by the local variation can 
be reduced by a group of multiple devices as described in two 
examples above. In addition to the local variation, the global 
variation is the core variation for the digital application. It is 
always there for a single path, but can be removed while 
evaluating the path skew for the two paths as discussed in the 
first example. Finally, the spatial effect is a challenge for 
modeling. It behaves more like a “local variation” while talking 
the mismatch of two paths for timing skew analysis in the 

example I. However, for a given short path, the spatial effect 
behaves more like an additional global variation that cannot be 
cancelled as discussed in example II.  

Figure 8.  Type A and B delay chains. A 9X9 correlation matrix as shown in 

Fig.6 is needed to describe the correlation among different zones. For a short 

path like type B, the sptial effect can not be canncelled, so the spatial effect 

acts like an additional global variation. An additional guardband is needed 

compared with type B circuit. 

IV. CONCLUSION 

In this work, a comprehensive characterization and 
modeling approach have been proposed for three types of 
variation. The spatial effect modeling especially needs an extra 
attention due to the necessity of correlation matrix. The 
methodology has been verified with 28nm technology data. It 
demonstrated that significance of variation model to the circuit 
performance.  
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